Publications

Results 26–50 of 90

Search results

Jump to search filters

Effect of temperature and FEC on silicon anode heat generation measured by isothermal microcalorimetry

Journal of the Electrochemical Society

Arnot, David J.; Allcorn, Eric A.; Harrison, Katharine L.

Isothermal microcalorimetry (IMC) was used to better understand parasitic reactions and heat generation from Si electrodes in the first 10 cycles using Li/Si half cells. Heat generation from cell polarization (ohmic heat), entropy changes (reversible heat), and parasitic reactions (parasitic heat) are separated and quantified. The effect of temperature and fluoroethylene carbonate (FEC) as an electrolyte additive are also explored. Our results show that at the C/10 cycling rate used here, ohmic heat makes the largest contribution to overall heat generation while reversible heat is the smallest. Ohmic heat generation increases with cycle number due to increasing internal resistance, though the effect is smaller for cells with FEC. Interestingly, capacity-normalized parasitic heat generation is largely unaffected by changes in temperature despite differing reaction kinetics. We show that this is caused by a decrease in average parasitic reaction enthalpy as temperature is increased. Further, cells with FEC display higher average parasitic reaction enthalpy than cells without. The average parasitic reaction enthalpies for all the Si electrodes we tested were lower than previously reported values for graphite, indicating that the SEI formed on Si is less stable.

More Details

NMR spectroscopy of coin cell batteries with metal casings

Science Advances

Walder, Brennan W.; Conradi, Mark S.; Borchardt, John J.; Merrill, Laura C.; Sorte, Eric G.; Deichmann, Eric J.; Anderson, Travis M.; Alam, Todd M.; Harrison, Katharine L.

Battery cells with metal casings are commonly considered incompatible with nuclear magnetic resonance (NMR) spectroscopy because the oscillating radio-frequency magnetic fields ("rf fields") responsible for excitation and detection of NMR active nuclei do not penetrate metals. Here, we show that rf fields can still efficiently penetrate nonmetallic layers of coin cells with metal casings provided "B1 damming"configurations are avoided. With this understanding, we demonstrate noninvasive high-field in situ 7Li and 19F NMR of coin cells with metal casings using a traditional external NMR coil. This includes the first NMR measurements of an unmodified commercial off-the-shelf rechargeable battery in operando, from which we detect, resolve, and separate 7Li NMR signals from elemental Li, anodic β-LiAl, and cathodic LixMnO2 compounds. Real-time changes of β-LiAl lithium diffusion rates and variable β-LiAl 7Li NMR Knight shifts are observed and tied to electrochemically driven changes of the β-LiAl defect structure.

More Details

Uncovering the Relationship between Aging and Cycling on Lithium Metal Battery Self-Discharge

ACS Applied Energy Materials

Merrill, Laura C.; Rosenberg, Samantha G.; Jungjohann, Katherine L.; Harrison, Katharine L.

Lithium metal is considered the "holy grail"material to replace typical Li-ion anodes due to the absence of a host structure coupled with a high theoretical capacity. The absence of a host structure results in large volumetric changes when lithium is electrodeposited/dissolved, making the lithium prone to stranding and parasitic reactions with the electrolyte. Lithium research is focused on enabling highly reversible lithium electrodeposition/dissolution, which is important to achieving long cycle life. Understanding the various mechanisms of self-discharge is also critical for realizing practical lithium metal batteries but is often overlooked. In contrast to previous work, it is shown here that self-discharge via galvanic corrosion is negligible, particularly when lithium is cycled to relevant capacities. Rather, the continued electrochemical cycling of lithium metal results in self-discharge when periodic rest is applied during cycling. The extent of self-discharge can be controlled by increasing the capacity of plated lithium, tuning electrolyte chemistry, incorporating regular rest, or introducing lithiophilic materials. The Coulombic losses that occur during periodic rest are largely reversible, suggesting that the dominant self-discharge mechanism in this work is not an irreversible chemical process but rather a morphological process.

More Details

Degradation-resistant TiO2@Sn anodes for high-capacity lithium-ion batteries

Journal of Materials Science

Jungjohann, Katherine L.; Goriparti, Subrahmanyam; Harrison, Katharine L.

As the demand for higher-performance batteries has increased, so has the body of research on theoretical high-capacity anode materials. However, the research has been hindered because the high-capacity anode material properties and interactions are not well understood, largely due to the difficulty of observing cycling in situ. Using electrochemical scanning transmission electron microscopy (ec-STEM), we report the real-time observation and electrochemical analysis of pristine tin (Sn) and titanium dioxide-coated Sn (TiO2@Sn) electrodes during lithiation/delithiation. As expected, we observed a volume expansion of the pristine Sn electrodes during lithiation, but we further observed that the expansion was followed by Sn detachment from the current collector. Remarkably, although the TiO2@Sn electrodes also exhibited similar volume expansion during lithiation, they showed no evidence of Sn detachment. We found that the TiO2 surface layer acted as an electrochemically activated artificial solid-electrolyte interphase that serves to conduct Li ions. As a physical coating, it mechanically prevented Sn detachment following volume changes during cycling, providing significant degradation resistance and 80% Coulombic efficiency for a complete lithiation/delithiation cycle. Interestingly, upon delithiation, TiO2@Sn electrode displayed a self-healing mechanism of small pore formation in the Sn particle followed by agglomeration into several larger pores as delithiation continued.

More Details

Effects of Applied Interfacial Pressure on Li-Metal Cycling Performance and Morphology in 4 M LiFSI in DME

ACS Applied Materials and Interfaces

Harrison, Katharine L.; Goriparti, Subrahmanyam; Merrill, Laura C.; Long, Daniel M.; Warren, Benjamin A.; Laros, James H.; Perdue, Brian R.; Casias, Zachary C.; Cuillier, Paul; Boyce, Brad B.; Jungjohann, Katherine L.

Lithium-metal anodes can theoretically enable 10× higher gravimetric capacity than conventional graphite anodes. However, Li-metal anode cycling has proven difficult due to porous and dendritic morphologies, extensive parasitic solid electrolyte interphase reactions, and formation of dead Li. We systematically investigate the effects of applied interfacial pressure on Li-metal anode cycling performance and morphology in the recently developed and highly efficient 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane electrolyte. We present cycling, morphology, and impedance data at a current density of 0.5 mA/cm2 and a capacity of 2 mAh/cm2 at applied interfacial pressures of 0, 0.01, 0.1, 1, and 10 MPa. Cryo-focused ion beam milling and cryo-scanning electron microscopy imaging in cross section reveal that increasing the applied pressure during Li deposition from 0 to 10 MPa leads to greater than a fivefold reduction in thickness (and therefore volume) of the deposited Li. This suggests that pressure during cycling can have a profound impact on the practical volumetric energy density for Li-metal anodes. A "goldilocks zone"of cell performance is observed at intermediate pressures of 0.1-1 MPa. Increasing pressure from 0 to 1 MPa generally improves cell-to-cell reproducibility, cycling stability, and Coulombic efficiency. However, the highest pressure (10 MPa) results in high cell overpotential and evidence of soft short circuits, which likely result from transport limitations associated with increased pressure causing local pore closure in the separator. All cells exhibit at least some signs of cycling instability after 50 cycles when cycled to 2 mAh/cm2 with thin 50 μm Li counter electrodes, though instability decreases with increasing pressure. In contrast, cells cycled to only 1 mAh/cm2 perform well for 50 cycles, indicating that capacity plays an important role in cycling stability.

More Details

Silicon Consortium Project: No-Go on Moir Interferometry for Measuring SEI Strain as a Probe for Calendar Life Testing

McBrayer, Josefine D.; Serkland, Darwin K.; Fenton, Kyle R.; Apblett, Christopher A.; Minteer, Shelley; Harrison, Katharine L.

Silicon is a promising candidate as a next generation anode to replace or complement graphite electrodes due to its high energy density and low lithiation potential. When silicon is lithiated, it experiences over 300% expansion which stresses the silicon as well as its solid electrolyte interphase (SEI) leading to poor performance. The use of nano-sized silicon has helped to mitigate volume expansion and stress in the silicon, yet the silicon SEI is still both mechanically and chemically unstable. Identifying the mechanical failure mechanism of the SEI will help enhance calendar and cycle life performance through improved SEI design. In situ moiré interferometry was investigated to try and track the in-plane strain in the SEI and silicon electrode for this purpose. Moiré can detect on the order of 10 nm changes in displacement and is therefore a useful tool in the measurement of strain. As the sample undergoes small deformations, large changes in the moiré fringe allow for measurements of displacement below the diffraction limit of light. Figure 1a shows how the moiré fringe changes as the sample grating deforms. As the sample contracts or expands, the frequency of the moiré fringe changes, and this change is proportional to the strain in the sample.

More Details

MnSn2 and MnSn2–TiO2 nanostructured anode materials for lithium-ion batteries

Nanotechnology

Goriparti, Subrahmanyam; Mcgrath, Andrew J.; Rosenberg, Samantha G.; Siegal, Michael P.; Ivanov, Sergei A.; Harrison, Katharine L.

The high theoretical lithium storage capacity of Sn makes it an enticing anode material for Li-ion batteries (LIBs); however, its large volumetric expansion during Li–Sn alloying must be addressed. Combining Sn with metals that are electrochemically inactive to lithium leads to intermetallics that can alleviate volumetric expansion issues and still enable high capacity. Here, we present the cycling behavior of a nanostructured MnSn2 intermetallic used in LIBs. Nanostructured MnSn2 is synthesized by reducing Sn and Mn salts using a hot injection method. The resulting MnSn2 is characterized by x-ray diffraction and transmission electron microscopy and then is investigated as an anode for LIBs. The MnSn2 electrode delivers a stable capacity of 514 mAh g-1 after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. Unlike other Sn-intermetallic anodes, an activation overpotential peak near 0.9 V versus Li is present from the second lithiation and in subsequent cycles. We hypothesize that this effect is likely due to electrolyte reactions with segregated Mn from MnSn2. To prevent these undesirable Mn reactions with the electrolyte, a 5 nm TiO2 protection layer is applied onto the MnSn2 electrode surface via atomic layer deposition. The TiO2-coated MnSn2 electrodes do not exhibit the activation overpotential peak. The protection layer also increases the capacity to 612 mAh g-1 after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. This higher capacity is achieved by suppressing the parasitic reaction of Mn with the electrolyte, as is supported by x-ray photoelectron spectroscopy analysis.

More Details

Cryogenic Laser Ablation Reveals Short-Circuit Mechanism in Lithium Metal Batteries

ACS Energy Letters

Jungjohann, Katherine L.; Gannon, Renae N.; Goriparti, Subrahmanyam; Randolph, Steven J.; Merrill, Laura C.; Johnson, David C.; Zavadil, Kevin R.; Harris, Stephen J.; Harrison, Katharine L.

The dramatic 50% improvement in energy density that Li-metal anodes offer in comparison to graphite anodes in conventional lithium (Li)-ion batteries cannot be realized with current cell designs because of cell failure after a few cycles. Often, failure is caused by Li dendrites that grow through the separator, leading to short circuits. Here, we used a new characterization technique, cryogenic femtosecond laser cross sectioning and subsequent scanning electron microscopy, to observe the electroplated Li-metal morphology and the accompanying solid electrolyte interphase (SEI) into and through the intact coin cell battery's separator, gradually opening pathways for soft-short circuits that cause failure. We found that separator penetration by the SEI guided the growth of Li dendrites through the cell. A short-circuit mechanism via SEI growth at high current density within the separator is provided. These results will inform future efforts for separator and electrolyte design for Li-metal anodes.

More Details

Use of a Be-dome holder for texture and strain characterization of Li metal thin films via sin(ψ) methodology

Powder Diffraction

Rodriguez, Mark A.; Harrison, Katharine L.; Goriparti, Subrahmanyam G.; Griego, James J.M.; Boyce, Brad B.; Perdue, Brian R.

Residual strain in electrodeposited Li films may affect safety and performance in Li metal battery anodes, so it is important to understand how to detect residual strain in electrodeposited Li and the conditions under which it arises. To explore this Li films, electrodeposited onto Cu metal substrates, were prepared under an applied pressure of either 10 or 1000 kPa and subsequently tested for the presence or absence of residual strain via sin(ψ) analysis. X-ray diffraction (XRD) analysis of Li films required preparation and examination within an inert environment; hence, a Be-dome sample holder was employed during XRD characterization. Results show that the Li film grown under 1000 kPa displayed a detectable presence of in-plane compressive strain (-0.066%), whereas the Li film grown under 10 kPa displayed no detectable in-plane strain. The underlying Cu substrate revealed an in-plane residual strain near zero. Texture analysis via pole figure determination was also performed for both Li and Cu and revealed a mild fiber texture for Li metal and a strong bi-axial texture of the Cu substrate. Experimental details concerning sample preparation, alignment, and analysis of the particularly air-sensitive Li films have also been detailed. This work shows that Li metal exhibits residual strain when electrodeposited under compressive stress and that XRD can be used to quantify that strain.

More Details
Results 26–50 of 90
Results 26–50 of 90