Publications

Results 26–50 of 114

Search results

Jump to search filters

A Platform-Independent X-ray Diffraction Diagnostic for Phase Transition Kinetics in Traditional and Synthetic Microstructure Materials (LDRD Project 213088 Final Report)

Ao, Tommy A.; Austin, Kevin N.; Breden, E.W.; Brown, Justin L.; Dean, Steven W.; Duwal, Sakun D.; Fan, Hongyou F.; Laros, James H.; Knudson, Marcus D.; Meng, Lingyao; Morgan, Dane; Pacheco, Lena M.; Qin, Yang; Stoltzfus, Brian S.; Thurston, Bryce A.; Usher, Joshua M.; Lane, James M.

Pulsed-power generators using the magnetic loading technique are able to produce well-controlled continuous ramp compression of condensed matter for high-pressure equation-of-state studies. X-ray diffraction (XRD) data from dynamically compressed samples provide direct measurements of the elastic compression of the crystal lattice, onset of plastic flow, strength-strain rate dependence, structural phase transitions, and density of crystal defects such as dislocations. Here, we present a cost effective, compact X-ray source for XRD measurements on pulsed-power-driven ramp-loaded samples. This combination of magnetically-driven ramp compression of materials with single, short-pulse XRD diagnostic will be a powerful capability for the dynamic materials community. The success in fielding this new XRD diagnostic dramatically improves our predictive capability and understanding of rate-dependent behavior at or near phase transition. As Sandia plans the next-generation pulse-power driver platform, a key element needed to deliver new state-of-the-art experiments will be having the necessary diagnostic tools to probe new regimes and phenomena. These diagnostics need to be as versatile, compact, and portable as they are powerful. The development of a platform-independent XRD diagnostic gives Sandia researchers a new window to study the microstructure and phase dynamics of materials under load. This project has paved the way for phase transition research in a variety of materials with mission interest.

More Details

Simultaneous inference of the compressibility and inelastic response of tantalum under extreme loading

Journal of Applied Physics

Schill, W.J.; Austin, R.A.; Schimdt, K.L.; Brown, Justin L.; Barton, N.R.

We study the deformation of tantalum under extreme loading conditions. Experimental velocity data are drawn from both ramp loading experiments on Sandia's Z-machine and gas gun compression experiments. The drive conditions enable the study of materials under pressures greater than 100 GPa. We provide a detailed forward model of the experiments including a model of the magnetic drive for the Z-machine. Utilizing these experiments, we simultaneously infer several different types of physically motivated parameters describing equation of state, plasticity, and anelasticity via the computational device of Bayesian model calibration. Characteristics of the resulting calculated posterior distributions illustrate relationships among the parameters of interest via the degree of cross correlation. The calibrated velocity traces display good agreement with the experiments up to experimental uncertainty as well as improvement over previous calibrations. Examining the Z-shots and gun-shots together and separately reveals a trade-off between accuracy and transferability across different experimental conditions. Implications for model calibration, limitations from model form, and suggestions for improvements are discussed.

More Details

Measurement of the strengths of Be and Pb4Sb by quasi-isentropic compress and release at near 100 GPa

Journal of Applied Physics

Fairley, J.S.T.; Rothman, S.D.; Brown, Justin L.

Ramp-compression experiments have been performed on the “Z” pulsed-power facility to investigate the strengths of Be and lead-antimony alloy. Yield strength and shear stress near peak pressure were obtained from measurements of the sound speed on release and using the Asay self-consistent method. Two S-65 grade Be samples, from batches that showed a significant difference in yield strength at ambient conditions, were found to have near identical yield strengths, which were also in agreement with similar earlier measurements on S-200 grade Be. Yield strength of the Pb4Sb alloy at ∼120 GPa was 1.35 GPa, while a National Ignition Facility experiment by Krygier et al. [Phys. Rev. Lett. 123, 205701 (2020)] found 3.8 GPa at ∼400 GPa pressure. Our result is intermediate between the ambient value and the one by Krygier et al., but the significantly increased strength is probably not associated with the transition to the high-pressure bcc phase of lead.

More Details

Multi-megabar Dynamic Strength Measurements of Ta, Au, Pt, and Ir

Journal of Dynamic Behavior of Materials

Brown, Justin L.; Davis, Jean-Paul D.; Seagle, Christopher T.

Magnetic loading was used to shocklessly compress four different metals to extreme pressures. Velocimetry monitored the behavior of the material as it was loaded to a desired peak state and then decompressed back down to lower pressures. Two distinct analysis methods, including a wave profile analysis and a novel Bayesian calibration approach, were employed to estimate quantitative strength metrics associated with the loading reversal. Specifically, we report for the first time on strength estimates for tantalum, gold, platinum, and iridium under shockless compression at strain rates of ∼ 5 × 10 5/s in the pressure range of ∼ 100–400 GPa. The magnitude of the shear stresses supported by the different metals under these extreme conditions are surprisingly similar, representing a dramatic departure from ambient conditions.

More Details

Anelasticity and Phase Transition During Ramp-Release in Tin

Journal of Dynamic Behavior of Materials

Schill, W.; Austin, R.; Brown, Justin L.; Barton, N.

This article examines the qualitative features of an anelasticity model associated with the bowing of dislocations in the presence of phase transition. A simple physically plausible mechanism is introduced to describe the interaction of anelasticity and the transformation. Varying the anelastic parameters results in strong differences in the deviatoric stress response. The model is applied to study the behavior of tin (Sn) and compared to data from ramp driven compression-release experiments. Tin exhibits a complex phase diagram within a relatively accessible range of temperature and pressures and the characterization of its phases is considered an open problem with significant scientific merit. The coupling between anelasticity, plasticity, and phase transformation contributes to release wave features traditionally associated with the phase transition effect alone suggesting the importance of accounting for the effects jointly. Posterior distributions of the plastic and anelastic parameters are computed using Bayesian-inference-based methods, further highlighting the importance of anelasticity in this regime.

More Details

Dynamic x-ray diffraction and nanosecond quantification of kinetics of formation of β -zirconium under shock compression

Physical Review B

Laros, James H.; Brown, Justin L.; Specht, Paul E.; Root, Seth R.; White, Melanie; Smith, Jesse S.

We report the atomic- and nanosecond-scale quantification of kinetics of a shock-driven phase transition in Zr metal. We uniquely make use of a multiple shock-and-release loading pathway to shock Zr into the β phase and to create a quasisteady pressure and temperature state shortly after. Coupling shock loading with in situ time-resolved synchrotron x-ray diffraction, we probe the structural transformation of Zr in the steady state. Our results provide a quantified expression of kinetics of formation of β-Zr phase under shock loading: transition incubation time, completion time, and crystallization rate.

More Details

Experimental evaluation of shear modulus scaling of dynamic strength at extreme pressures

Journal of Applied Physics

Brown, Justin L.; Prime, M.B.; Barton, N.R.; Luscher, D.J.; Burakovsky, L.; Orlikowski, D.

Recent progress in the development of dynamic strength experimental platforms is allowing for unprecedented insight into the assumptions used to construct constitutive models operating in extreme conditions. In this work, we make a quantitative assessment of how tantalum strength scales with its shear modulus to pressures of hundreds of gigapascals through a cross-platform examination of three dynamic strength experiments. Specifically, we make use of Split-Hopkinson pressure bar and Richtmyer-Meshkov instability experiments to assess the low-pressure strain and strain rate dependence. Concurrent examination of magnetically driven ramp-release experiments up to pressures of 350 GPa allows us to examine the pressure dependence. Using a modern description of the shear modulus, validated against both ab initio theory and experimental measurements, we then assess how the experimentally measured pressure dependence scales with shear modulus. We find that the common assumption of scaling strength linearly with the shear modulus is too soft at high pressures and offer discussion as to how descriptions of slip mediated plasticity could result in an alternative scaling that is consistent with the data.

More Details

Dealing with measurement uncertainties as nuisance parameters in bayesian model calibration

SIAM-ASA Journal on Uncertainty Quantification

Rumsey, Kelin R.; Huerta, Jose G.; Brown, Justin L.; Hund, Lauren

In the presence of model discrepancy, the calibration of physics-based models for physical parameter inference is a challenging problem. Lack of identifiability between calibration parameters and model discrepancy requires additional identifiability constraints to be placed on the model discrepancy to obtain unique physical parameter estimates. If these assumptions are violated, the inference for the calibration parameters can be systematically biased. In many applications, such as in dynamic material property experiments, many of the calibration inputs refer to measurement uncertainties. In this setting, we develop a metric for identifying overfitting of these measurement uncertainties, propose a prior capable of reducing this overfitting, and show how this leads to a diagnostic tool for validation of physical parameter inference. The approach is demonstrated for a benchmark example and applied for a material property application to perform inference on the equation of state parameters of tantalum.

More Details

Tantalum strength at extreme strain rates from impact-driven Richtmyer-Meshkov instabilities

Physical Review E

Prime, Michael B.; Buttler, William T.; Fensin, Saryu J.; Jones, David R.; King, Robert S.; Manzanares, Ruben; Martinez, Daniel T.; Martinez, John I.; Payton, Jeremy R.; Schmidt, Derek W.; Brown, Justin L.

Recently, Richtmyer-Meshkov instability (RMI) experiments driven by high explosives and fielded with perturbations on a free surface have been used to study strength at extreme strain rates and near zero pressure. The RMI experiments reported here used impact loading, which is experimentally simpler, more accurate to analyze, and which also allows the exploration of a wider range of conditions. Three experiments were performed on tantalum at shock stresses from 20 to 34 GPa, with six different perturbation sizes at each shock level, making this the most comprehensive set of strength-focused RMI experiments reported to date on any material. The resulting estimated average strengths of 1200-1400 MPa at strain rates of 107/s exceeded, by 40% or more, a common power law extrapolation from data at strain rates below 104/s. Taken together with other data in the literature that show much higher strength at simultaneous high rates and high pressure, these RMI data isolated effects and indicated that, in the range of conditions examined, the pressure effects are more significant than rate effects.

More Details

Statistically Rigorous Uncertainty Quantification for Physical Parameter Model Calibration with Functional Output

Hund, Lauren H.; Brown, Justin L.

In experiments conducted on the Z-machine at Sandia National Laboratories, dynamic material properties cannot be analyzed using traditional analytic methods, necessitating solving an inverse problem. Bayesian model calibration is a statistical framework for solving an inverse problem to estimate parameters input into a computational model in the presence of multiple uncertainties. Disentangling input parameter uncertainty and model misspecification is often poorly identified problem. When using computational models for physical parameter estimation, the issue of parameter identifiability must be carefully considered to obtain accurate and precise estimates of physical parameters. Additionally, in dynamic material properties applications, the experimental output is a function, velocity over time. While we can sample an arbitrarily large number of points from the measured velocity, these curves only contain a finite amount of information about the calibration parameters. In this report, we propose modifications to the Bayesian model calibration framework to simplify and improve the estimation of physical parameters with functional outputs. Specifically, we propose scaling the likelihood function by an effective sample size rather than modeling the discrepancy function; and modularizing input nuisance parameters with weakly identified parameters. We evaluate the performance of these proposed methods using a statistical simulation study and then apply these methods to estimate parameters of the tantalum equation of state. We conclude that these proposed methods can provide simple, fast, and statistically valid alternatives to the full Bayesian model calibration procedure; and that these methods can be used to estimate parameters of the equation of state for tantalum.

More Details

Shortening the Design and Certification Cycle for Additively Manufactured Materials by Improved Mesoscale Simulations and Validation Experiments: Fiscal Year 2019 Status Report

Specht, Paul E.; Mitchell, John A.; Adams, David P.; Brown, Justin L.; Silling, Stewart A.; Wise, Jack L.; Palmer, Todd

This report outlines the fiscal year (FY) 2019 status of an ongoing multi-year effort to develop a general, microstructurally-aware, continuum-level model for representing the dynamic response of material with complex microstructures. This work has focused on accurately representing the response of both conventionally wrought processed and additively manufactured (AM) 304L stainless steel (SS) as a test case. Additive manufacturing, or 3D printing, is an emerging technology capable of enabling shortened design and certification cycles for stockpile components through rapid prototyping. However, there is not an understanding of how the complex and unique microstructures of AM materials affect their mechanical response at high strain rates. To achieve our project goal, an upscaling technique was developed to bridge the gap between the microstructural and continuum scales to represent AM microstructures on a Finite Element (FE) mesh. This process involves the simulations of the additive process using the Sandia developed kinetic Monte Carlo (KMC) code SPPARKS. These SPPARKS microstructures are characterized using clustering algorithms from machine learning and used to populate the quadrature points of a FE mesh. Additionally, a spall kinetic model (SKM) was developed to more accurately represent the dynamic failure of AM materials. Validation experiments were performed using both pulsed power machines and projectile launchers. These experiments have provided equation of state (EOS) and flow strength measurements of both wrought and AM 304L SS to above Mbar pressures. In some experiments, multi-point interferometry was used to quantify the variation is observed material response of the AM 304L SS. Analysis of these experiments is ongoing, but preliminary comparisons of our upscaling technique and SKM to experimental data were performed as a validation exercise. Moving forward, this project will advance and further validate our computational framework, using advanced theory and additional high-fidelity experiments.

More Details

Estimates of Ta strength at ultrahigh pressures and strain rates using thin-film graded-density impactors

Physical Review B

Brown, Justin L.; Laros, James H.; Alexander, Charles S.; Wise, Jack L.; Prime, M.B.

We present results from an experimental technique used to estimate the strength of Ta at extreme pressures (150 GPa) and strain rates (107s-1). A graded-density impactor (GDI) was fabricated using sputter deposition to produce an approximately 40-μm-thick film containing alternating layers of Al and Cu. The thicknesses of the respective layers are adjusted to give an effective density gradient through the film. The GDIs were launched with a 2-stage light gas gun, and shock-ramp-release velocity profiles were measured over timescales of ∼10 ns. Results are presented for the direct impact of the film onto LiF windows, which allows for a dynamic characterization of the GDI, as well as from impact onto thin (∼40μm) sputtered Ta samples backed by a LiF window. The measurements were coupled with mesoscale numerical simulations to infer the strength of Ta, and the results agree well with other high-pressure platforms, particularly when strain-rate, microstructural, and thermodynamic-path differences are considered.

More Details
Results 26–50 of 114
Results 26–50 of 114