Publications

Results 1–50 of 104

Search results

Jump to search filters

Thickness-Independent Vibrational Thermal Conductance across Confined Solid-Solution Thin Films

ACS Applied Materials and Interfaces

Giri, Ashutosh; Cheaito, Ramez; Gaskins, John T.; Mimura, Takanori; Brown-Shaklee, Harlan J.; Medlin, Douglas L.; Ihlefeld, Jon F.; Hopkins, Patrick E.

We experimentally show that the thermal conductance across confined solid-solution crystalline thin films between parent materials does not necessarily lead to an increase in thermal resistances across the thin-film geometries with increasing film thicknesses, which is counterintuitive to the notion that adding a material serves to increase the total thermal resistance. Confined thin epitaxial Ca0.5Sr0.5TiO3 solid-solution films with systematically varying thicknesses in between two parent perovskite materials of calcium titanate and (001)-oriented strontium titanate are grown, and thermoreflectance techniques are used to accurately measure the thermal boundary conductance across the confined solid-solution films, showing that the thermal resistance does not substantially increase with the addition of solid-solution films with increasing thicknesses from μ1 to μ10 nm. Contrary to the macroscopic understanding of thermal transport where adding more material along the heat propagation direction leads to larger thermal resistances, our results potentially offer experimental support to the computationally predicted concept of vibrational matching across interfaces. This concept is based on the fact that a better match in the available heat-carrying vibrations due to an interfacial layer can lead to lower thermal boundary resistances, thus leading to an enhancement in thermal boundary conductance across interfaces driven by the addition of a thin "vibrational bridge"layer between two solids.

More Details

Data Analysis for the Born Qualified Grand LDRD Project

Swiler, Laura P.; Van Bloemen Waanders, Bart; Jared, Bradley H.; Koepke, Joshua R.; Whetten, Shaun R.; Madison, Jonathan D.; Ivanoff, Thomas; Foulk, James W.; Cook, Adam; Brown-Shaklee, Harlan J.; Kammler, Daniel; Johnson, Kyle L.; Ford, Kurtis; Bishop, Joseph E.; Roach, Robert A.

This report summarizes the data analysis activities that were performed under the Born Qualified Grand Challenge Project from 2016 - 2018. It is meant to document the characterization of additively manufactured parts and processes for this project as well as demonstrate and identify further analyses and data science that could be done relating material processes to microstructure to properties to performance.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, Robert A.; Argibay, Nicolas; Allen, Kyle; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad L.; Brown, Judith A.; Burchard, Ross L.; Chandross, Michael E.; Cook, Adam; Diantonio, Christopher; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis; Ivanoff, Thomas; Jared, Bradley H.; Johnson, Kyle L.; Kammler, Daniel; Koepke, Joshua R.; Kustas, Andrew B.; Lavin, Judith M.; Leathe, Nicholas S.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal; Martinez, Mario J.; Moser, Daniel R.; Rodgers, Theron M.; Seidl, D.T.; Brown-Shaklee, Harlan J.; Stanford, Joshua; Stender, Michael; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha; Trembacki, Bradley L.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, Robert A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David; Cook, Adam; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua; Boyce, Brad L.; Johnson, Kyle L.; Rodgers, Theron M.; Ford, Kurtis; Martinez, Mario J.; Moser, Daniel R.; Van Bloemen Waanders, Bart; Chandross, Michael E.; Abdeljawad, Fadi F.; Allen, Kyle; Stender, Michael; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas; Brown-Shaklee, Harlan J.; Kustas, Andrew B.; Sugar, Joshua D.; Kammler, Daniel; Wilson, Mark A.

Abstract not provided.

Fabrication of Solid-State Multilayer Glass Capacitors

IEEE Transactions on Components, Packaging and Manufacturing Technology

Wilke, Rudeger; Brown-Shaklee, Harlan J.; Casias, Adrian L.; Cunningham, Billy; Dean, Amanda N.; Vecchio, Michael A.; Vudatha, Rohith

Alkali-free glasses show immense promise for the development of high-energy density capacitors. The high breakdown strengths on single-layer sheets of glass suggest the potential for improved energy densities over existing state-of-the art polymer capacitors. In this paper, we demonstrate the ability to package thin glass to make solid-state capacitors. Individual layers are bonded using epoxy, leading to capacitors that exhibit stable operation over the temperature range -55 °C to +65 °C. This fabrication approach is scalable and allows for proof testing individual layers prior to incorporation of the stack, providing a blueprint for the fabrication of high-energy density capacitors.

More Details

Fabrication of Wound Capacitors Using Flexible Alkali-Free Glass

IEEE Transactions on Components, Packaging and Manufacturing Technology

Wilke, Rudeger; Baker, Amanda; Brown-Shaklee, Harlan J.; Johnson, Raegan; Perini, Steve; Murata, Takashi; Lanagan, Michael; Hettler, Chad; O'Malley, Patrick D.

Alkali-free glasses, which exhibit high energy storage densities (~35 J/cc), present a unique opportunity to couple high temperature stability with high breakdown strength, and thus provide an avenue for capacitor applications with stringent temperature and power requirements. Realizing the potential of these materials in kilovolt class capacitors with >1 J/cc recoverable energy density requires novel packaging strategies that incorporate these extremely fragile dielectrics. In this paper, we demonstrate the feasibility of fabricating wound capacitors using 50-μm-thick glass. Two capacitors were fabricated from 2.8-m-long ribbons of thin (50 μm) glass wound into 125-140-mm-diameter spools. The capacitors exhibit a capacitance of 70-75 nF with loss tangents below 1%. The wound capacitors can operate up to 1 kV and show excellent temperature stability to 150 °C. By improving the end terminations, the self-resonance can be shifted to above 1 MHz, indicating that these materials may be useful for pulsed power applications with microsecond discharge times.

More Details
Results 1–50 of 104
Results 1–50 of 104