Publications

Results 26–33 of 33

Search results

Jump to search filters

Computational analysis of fluid-wall interactions in micro- and nano-domains

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED

Wong, Chungnin C.; Noble, David R.

In many micro-scale fluid dynamics problems, molecular-level processes can control the interfacial energy and viscoelastic properties at a liquid-solid interface. This leads to a flow behavior that is very different from those similar fluid dynamics problems at the macro-scale. Presently, continuum modeling fails to capture this flow behavior. Molecular dynamics simulations have been applied to investigate these complex fluid-wall interactions at the nano-scale. Results show that the influence of the wall crystal lattice orientation on the fluid-wall interactions can be very important. To address those problems involving interactions of multiple length scales, a coupled atomistic-continuum model has been developed and applied to analyze flow in channels with atomically smooth walls. The present coupling strategy uses the molecular dynamics technique to probe the non-equilibrium flow near the channel walls and applies constraints to the fluid particle motion, which is coupled to the continuum flow modeling in the interior region. We have applied this new methodology to investigate Couette flow in micro-channels.

More Details

Microscale Modeling and Simulation

Redmond, James M.; Reedy, Earl D.; Heinstein, Martin W.; De Boer, Maarten P.; Knapp, J.A.; Piekos, Edward S.; Wong, Chungnin C.; Holm, Elizabeth A.

The Microsystems Subgrid Physics project is intended to address gaps between developing high-performance modeling and simulation capabilities and microdomain specific physics. The initial effort has focused on incorporating electrostatic excitations, adhesive surface interactions, and scale dependent material and thermal properties into existing modeling capabilities. Developments related to each of these efforts are summarized, and sample applications are presented. While detailed models of the relevant physics are still being developed, a general modeling framework is emerging that can be extended to incorporate evolving material and surface interaction modules.

More Details

Materials Issues for Micromachines Development - ASCI Program Plan

Fang, H.E.; Miller, Samuel L.; Dugger, Michael T.; Prasad, Somuri V.; Reedy, Earl D.; Thompson, Aidan P.; Wong, Chungnin C.; Yang, Pin Y.; Battaile, Corbett C.; Benavides, Gilbert L.; Ensz, M.T.; Buchheit, Thomas E.; Lavan, David A.; Chen, Er-Ping C.; Christenson, Todd R.; De Boer, Maarten P.

This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.

More Details

Microfabricated planar preconcentrator

Manginell, Ronald P.; Frye-Mason, Gregory C.; Kottenstette, Richard K.; Lewis, Patrick R.; Wong, Chungnin C.

Front-end sampling or preconcentration is an important analytical technique and will be crucial to the success of many microanalytical detector systems. This paper describes a microfabricated planar preconcentrator ideal for integration with microanalytical systems. The device incorporates a surfactant templated sol gel adsorbent layer deposited on a microhotplate to achieve efficient analyte collection, and rapid, efficient thermal desorption. Concentration factors of 100--500 for dimethyl methyl phosphonate (DMMP) have been achieved with this device, while selectivities to interfering compounds greater than a factor of 25 have been demonstrated. Device performance will be compared with conventional preconcentrators, and the effects of system flow rate, flow channel geometry and collection time will be presented. A physical model of adsorption/desorption from the device will be reviewed and compared with experiment, while numerical simulation of flow over the device will be described.

More Details

Design and analysis of a preconcentrator for the μChemLabTM

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Wong, Chungnin C.; Flemming, Jeb H.; Manginell, Ronald P.; Kottenstette, Richard K.; Frye-Mason, Gregory C.

Preconcentration is a critical analytical procedure when designing a microsystem for trace chemical detection, because it can purify a sample mixture and boost the small analyte concentration to a much higher level allowing a better analysis. This paper describes the development of a micro-fabricated planar preconcentrator for the μChemLab™ at Sandia. To guide the design, an analytical model to predict the analyte transport, adsorption and desorption process in the preconcentrator has been developed. Experiments have also been conducted to analyze the adsorption and desorption process and to validate the model. This combined effort of modeling, simulation, and testing has led us to build a reliable, efficient preconcentrator with good performance.

More Details

Microfabricated Gas Phase Chemical Analysis Systems

Frye-Mason, Gregory C.; Manginell, Ronald P.; Heller, Edwin J.; Matzke, C.M.; Casalnuovo, Stephen A.; Hietala, Vincent M.; Kottenstette, Richard K.; Lewis, Patrick R.; Wong, Chungnin C.

A portable, autonomous, hand-held chemical laboratory ({micro}ChemLab{trademark}) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described.

More Details

Integratible Process for Fabrication of Fluidic Microduct Networks on a Single Wafer

Matzke, C.M.; Ashby, Carol I.; Manginell, Monica M.; Griego, Leonardo G.; Wong, Chungnin C.

We present a microelectronics fabrication compatible process that comprises photolithography and a key room temperature SiON thin film plasma deposition to define and seal a fluidic microduct network. Our single wafer process is independent of thermo-mechanical material properties, particulate cleaning, global flatness, assembly alignment, and glue medium application, which are crucial for wafer fusion bonding or sealing techniques using a glue medium. From our preliminary experiments, we have identified a processing window to fabricate channels on silicon, glass and quartz substrates. Channels with a radius of curvature between 8 and 50 {micro}m, are uniform along channel lengths of several inches and repeatable across the wafer surfaces. To further develop this technology, we have begun characterizing the SiON film properties such as elastic modulus using nanoindentation, and chemical bonding compatibility with other microelectronic materials.

More Details
Results 26–33 of 33
Results 26–33 of 33