Publications

Results 51–75 of 90

Search results

Jump to search filters

Development of Dynamic Ellipsometry for Measurements or Iron Conductivity at Earth's Core Conditions

Grant, Sean C.; Ao, Tommy A.; Davis, Jean-Paul D.; Laros, James H.; Seagle, Christopher T.; Lin, Jung-Fu; Bernstein, Aaron

The CHEDS researchers are engaged in a collaborative research project to study the properties of iron and iron alloys under Earth’s core conditions. The Earth’s core, inner and outer, is composed primarily of iron, thus studying iron and iron alloys at high pressure and temperature conditions will give the best estimate of its properties. Also, comparing studies of iron alloys with known properties of the core can constrain the potential light element compositions found within the core, such as fitting sound speeds and densities of iron alloys to established inner- Earth models. One of the lesser established properties of the core is the thermal conductivity, where current estimates vary by a factor of three. Therefore, one of the primary goals of this collaboration is to make relevant measurements to elucidate this conductivity.

More Details

Forward modeling of shock-ramped tantalum

AIP Conference Proceedings

Brown, Justin L.; Carpenter, John H.; Seagle, Christopher T.

Dynamic materials experiments on the Z-machine are beginning to reach a regime where traditional analysis techniques break down. Time dependent phenomena such as strength and phase transition kinetics often make the data obtained in these experiments difficult to interpret. We present an inverse analysis methodology to infer the equation of state (EOS) from velocimetry data in these types of experiments, building on recent advances in the propagation of uncertain EOS information through a hydrocode simulation. An example is given for a shock-ramp experiment in which tantalum was shock compressed to 40 GPa followed by a ramp to 80 GPa. The results are found to be consistent with isothermal compression and Hugoniot data in this regime.

More Details

Zero to 1,600 m/s in 40 microns: Sensitive pulse shaping for materials characterization on Z

Procedia Engineering

Porwitzky, Andrew J.; Seagle, Christopher T.; Jensen, Brian J.

Dynamic materials properties experiments on Sandia National Laboratories Z Machine require increasingly precise electrical current pulse shaping. In the experiment described here, a copper flyer plate is accelerated from rest to 1,600 m/s over a 40 micron flight gap in 50 ns. This flyer then impacts a cerium sample, shock melting the cerium, before subsequent quasi-isentropic ramping to mega-bar pressures. Through predictive simulations, postdicted analysis, and a new computational tool for characterizing inherent Z Machine timing accuracy, qualitative estimates of pulse controllability and experimental design robustness are arrived upon.

More Details

Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading

Journal of Applied Physics

Seagle, Christopher T.; Davis, Jean-Paul D.; Knudson, Marcus D.

Single crystal lithium fluoride (LiF), oriented [100], was shock loaded and subsequently shocklessly compressed in two experiments at the Z Machine. Velocimetry measurements were employed to obtain an impactor velocity, shock transit times, and in-situ particle velocities for LiF samples up to ∼1.8 mm thick. A dual thickness Lagrangian analysis was performed on the in-situ velocimetry data to obtain the mechanical response along the loading path of these experiments. An elastic response was observed on one experiment during initial shockless compression from 100 GPa before yielding. The relatively large thickness differences utilized for the dual sample analyses (up to ∼1.8 mm) combined with a relative timing accuracy of ∼0.2 ns resulted in an uncertainty of less than 1% on density and stress at ∼200 GPa peak loading on one experiment and <4% on peak loading at ∼330 GPa for another. The stress-density analyses from these experiments compare favorably with recent equation of state models for LiF.

More Details

High precision Hugoniot measurements on statically pre-compressed fluid helium

Journal of Applied Physics

Seagle, Christopher T.; Reinhart, William D.; Lopez, A.; Hickman, Randy J.; Laros, James H.

The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.

More Details

Optimization of Isentropic Compression Loads on Current-Adder Pulsed Power Accelerator Architectures

Reisman, David R.; Waisman, Eduardo M.; Stoltzfus, Brian S.; Stygar, William A.; Cuneo, M.E.; Haill, Thomas A.; Davis, Jean-Paul D.; Brown, Justin L.; Seagle, Christopher T.; Spielman, Rick B.

The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called “bricks”, that can be individually triggered to achieve a high degree of pulse tailoring for magnetically-driven isentropic compression experiments (ICE). The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel “current-adder” architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We describe the optimization procedure for the Thor design and show results for various materials of interest. Also, we discuss the extension of these concepts to the megajoule-class Neptune machine design. Given this design, we are able to design shockless ramp-driven experiments in the 1 TPa range of material pressure.

More Details

Dynamic compression of copper to over 450 GPa: A high-pressure standard

Physical Review B

Kraus, R.G.; Davis, Jean-Paul D.; Seagle, Christopher T.; Fratanduono, D.E.; Swift, D.C.; Brown, Justin L.; Eggert, J.H.

An absolute stress-density path for shocklessly compressed copper is obtained to over 450 GPa. A magnetic pressure drive is temporally tailored to generate shockless compression waves through over 2.5-mm-thick copper samples. The free-surface velocity data is analyzed for Lagrangian sound velocity using the iterative Lagrangian analysis (ILA) technique, which relies upon the method of characteristics. We correct for the effects of strength and plastic work heating to determine an isentropic compression path. By assuming a Debye model for the heat capacity, we can further correct the isentrope to an isotherm. Our determination of the isentrope and isotherm of copper represents a highly accurate pressure standard for copper to over 450 GPa.

More Details

Pulsed power accelerator for material physics experiments

Physical Review Special Topics - Accelerators and Beams

Reisman, David R.; Stoltzfus, Brian S.; Stygar, William A.; Austin, Kevin N.; Waisman, Eduardo M.; Hickman, Randy J.; Davis, Jean-Paul D.; Haill, Thomas A.; Knudson, Marcus D.; Seagle, Christopher T.; Brown, Justin L.

We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

More Details

Pre-Compressed Targets for Gas Gun Studies

Seagle, Christopher T.; Lopez, A.

This work developed the capability for pre-compressing targets for Hugoniot measurements utilizing gas gun driven flyer plates. Initial condition control, such as pre-compression, allows access to states off the principal Hugoniot and in the case of highly compressible materials, the locus of shock states may be well off (significantly denser than) the principal Hugoniot even for relatively modest (~100's MPa) initial pressures. The design and operation of the pre-compression target hardware will be discussed in relation to functionality and design considerations for dynamic testing. Capability for loading of super critical gases and gas mixtures has been successfully demonstrated and dynamic hypervelocity impacts of helium were tested. Example loading of supercritical alcohol (ethanol) will is presented in the context of previous impact studies of initially ambient quiescent liquid. Advantages and limitations of the system are discussed in the context accessing highly compressed states.

More Details

Single Stage Light Gas Gun Control System

Barnes, Paul M.; Reinhart, William D.; Seagle, Christopher T.

The intermediate light gas gun at the STAR facility is used for shock wave physics testing with projectile speeds between 25 m/s and 1000 m/s. In order to operate the gun, there are several remote valves, pumps, and sensors that must be operated from the control room. In an effort to improve the engineered safety and efficiency of the gun's operation, a new gas plumbing and controls system must be implemented to simplify operator interaction with high pressure and lower the chance of human error. A new plumbing system has been designed which will allow the bottle farm system, where high pressure gas is stored, to be remotely operated during gun pressurization in addition to a new control system. This new system utilizes LabVIEW, which will communicate directly with a data acquisition and control device located in the gun bay to easily operate the gun pressurization and firing.

More Details
Results 51–75 of 90
Results 51–75 of 90