Publications

40 Results

Search results

Jump to search filters

Influence of Linker Group on Bipolar Redox-Active Molecule Performance in Non-Aqueous Redox Flow Batteries

ChemElectroChem

Macchi, Samantha; Staiger, Chad L.; Foulk, James W.; Cordova, Jesse; Anderson, Travis M.

Redox flow batteries (RFBs) are an attractive choice for stationary energy storage of renewables such as solar and wind. Non-aqueous redox flow batteries (NARFBs) have garnered broad interest due to their high voltage operation compared to their aqueous counterparts. Further, the utilization of bipolar redox-active molecules (BRMs) is a practical way to alleviate crossover faced by asymmetric RFBs. In this work, ferrocene (Fc) and phthalimide (PI) are covalently linked with various tethering groups which vary in structure and length. The compiled results suggest that the length and steric shielding ability of the linker group can greatly influence the stability and overall performance of Fc-n-PI BRM-based NARFBs. Primary sources of capacity loss are found to be BRM degradation for straight chain spacers <6 carbons and membrane (Nafion) fouling. Fc-hexyl-PI provided the most stable battery cycling and coulombic efficiencies of >98 % over 100 cycles (~13 days). NARFB using Fc-hexyl-PI as an active material exhibited high working voltage (1.93 V) and maximum capacity (1.28 Ah L−1). Additionally, this work highlights rational strategies to improve cycling stability and optimize NARFB performance.

More Details

Synthesis and crystal structure of 2,9-diamino-5,6,11,12-tetrahydrodibenzo[a,e]cyclooctene

Acta Crystallographica Section E: Crystallographic Communications

Valdez, Nichole R.; Nagel, Eric; Redline, Erica; Rodriguez, Mark A.; Staiger, Chad L.; Dugger, Jason; Foster, Jeffrey

The cis- form of diaminodibenzocyclooctane (DADBCO, C16H18N2) is of interest as a negative coefficient of thermal expansion (CTE) material. The crystal structure was determined through single-crystal X-ray diffraction at 100 K and is presented herein.

More Details

Tuning Epoxy Thermomechanics via Thermal Isomerization: A Route to Negative Coefficient of Thermal Expansion Materials

ACS Macro Letters

Foster, Jeffrey; Staiger, Chad L.; Dugger, Jason; Redline, Erica

Fine control over the thermal expansion and contraction behavior of polymer materials is challenging. Most polymers have large coefficients of thermal expansion (CTEs), which preclude long performance lifetimes of composite materials. Herein, we report the design and synthesis of epoxy thermosets with low CTE values below their Tg and large contraction behavior above Tg by incorporating thermally contractile dibenzocyclooctane (DBCO) motifs within the thermoset network. This atypical thermomechanical behavior was rationalized in terms of a twist-boat to chair conformational equilibrium of the DBCO linkages. We anticipate these findings to be generally useful in the preparation of materials with designed CTE values.

More Details

Selectively Depolymerizable Polyurethanes from Unsaturated Polyols Cleavable by Olefin Metathesis

Macromolecular Rapid Communications

Jones, Brad H.; Staiger, Chad L.; Powers, Jackson; Herman, Jeremy A.; Kustas, Jessica

This communication describes a novel series of linear and crosslinked polyurethanes (PUs) and their selective depolymerization under mild conditions. Two unique polyols are synthesized bearing unsaturated units in a configuration designed to favor ring-closing metathesis (RCM) to five- and six-membered cycloalkenes. These polyols are co-polymerized with toluene diisocyanate to generate linear PUs and trifunctional hexamethylene- and diphenylmethane-based isocyanates to generate crosslinked PUs. The polyol design is such that the RCM reaction cleaves the backbone of the polymer chain. Upon exposure to dilute solutions of Grubbs’ catalyst under ambient conditions, the PUs are rapidly depolymerized to low molecular weight, soluble products bearing vinyl and cycloalkene functionalities. These functionalities enable further re-polymerization by traditional strategies for polymerization of double bonds. It is anticipated that this general approach can be expanded to develop a range of chemically recyclable condensation polymers that are readily depolymerized by orthogonal metathesis chemistry.

More Details

Mediated Flow Batteries

Small, Leo J.; Foulk, James W.; Staiger, Chad L.; Anderson, Travis M.

The energy density of nonaqueous redox flow batteries is often limited by the concentration of the redox active species soluble in solution. A possible route to increasing the this energy density is through the use of energy-dense solid materials such as polyoxometalates, LiFePO4, or LixTi02. These solid materials can be contained in canisters through which an electrolyte with dissolved redox-active species is flowed. The redox potentials for the flowing species are chosen specifically such that they mediate the chemical reduction and oxidation of the solid components. This strategy is advantageous in that it allows for independent optimization of the flow electrolyte (e.g. for low viscosity, high charging rate) and the solid energy storing media (e.g. high energy density). This report summarizes results using a variety of redox active organic and metalorganic species to mediate the oxidation and reduction of polyoxometalate and Li-ion battery chemistries in a redox flow battery system.

More Details

MetILs3: A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids

Advanced Sustainable Systems

Small, Leo J.; Foulk, James W.; Staiger, Chad L.; Anderson, Travis M.

We present a systematic approach for increasing the concentration of redox-active species in electrolytes for nonaqueous redox flow batteries (RFBs). Starting with an ionic liquid consisting of a metal coordination cation (MetIL), ferrocene-containing ligands and iodide anions are substituted incrementally into the structure. While chemical structures can be drawn for molecules with 10 m redox-active electrons (RAE), practical limitations such as melting point and phase stability constrain the structures to 4.2 m RAE, a 2.3× improvement over the original MetIL. Dubbed “MetILs3,” these ionic liquids possess redox activity in the cation core, ligands, and anions. Throughout all compositions, infrared spectroscopy shows the ethanolamine-based ligands primarily coordinate to the Fe2+ core via hydroxyl groups. Calorimetry conveys a profound change in thermophysical properties, not only in melting temperature but also in suppression of a cold crystallization only observed in the original MetIL. Square wave voltammetry reveals redox processes characteristic of each molecular location. Testing a laboratory-scale RFB demonstrates Coulombic efficiencies >95% and increased voltage efficiencies due to more facile redox kinetics, effectively increasing capacity 4×. Application of this strategy to other chemistries, optimizing melting point and conductivity, can yield >10 m RAE, making nonaqueous RFB a viable technology for grid scale storage.

More Details

Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4

Small, Leo J.; Foulk, James W.; Staiger, Chad L.; Martin, Rachel I.; Anderson, Travis M.; Chalamala, Babu C.; Soundappan, Thiagarajan; Tiwari, Monika; Subarmanian, Venkat R.

We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

More Details

Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

Fenton, Kyle R.; Nagasubramanian, Ganesan; Staiger, Chad L.; Foulk, James W.; Rempe, Susan; Leung, Kevin; Chaudhari, Mangesh I.; Anderson, Travis M.

This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

More Details

Density functional theory and conductivity studies of boron-based anion receptors

Journal of the Electrochemical Society

Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan; Fenton, Kyle R.; Foulk, James W.; Staiger, Chad L.; Nagasubramanian, Ganesan

Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries.We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor is sufficiently electrophilic that organic solvent molecules compete with F- for boron-site binding, and specific solvent effects must be considered when predicting its F- affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F- and organic solvent molecules. After accounting for specific solvent effects, however, its net F- affinity is about the same as the simple oxalate-based anion receptor. Finally, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F- ions.

More Details

Oxygen generator for medical applications (USIC)

Staiger, Chad L.

The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible using a Membrane-PSA system.

More Details

Reimagining Liquid Transportation Fuels: Sunshine to Petrol

Allendorf, Mark; Staiger, Chad L.; Ambrosini, Andrea A.; Chen, Ken S.; Coker, Eric N.; Dedrick, Daniel E.; Hogan Jr., Roy E.; Ermanoski, Ivan; Johnson, Terry A.; Mcdaniel, Anthony H.

Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO2 + (x+1)H2O → CxH2x+2(liquid fuel) + (1.5x+.5)O2 Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO2 and H2O to CO and H2, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO2 to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

More Details

Synthesis of an ionic liquid with an iron coordination cation

Dalton Transactions

Anderson, Travis M.; Ingersoll, David; Hensley, Alyssa H.; Staiger, Chad L.; Leonard, Jonathan C.

An iron-based ionic liquid, Fe((OHCH2CH2) 2NH)6(CF3SO3)3, is synthesized in a single-step complexation reaction. Infrared and Raman data suggest NH(CH2CH2OH)2 primarily coordinates to Fe(iii) through alcohol groups. The compound has Tg and Td values of -64°C and 260°C, respectively. Cyclic voltammetry reveals quasi-reversible Fe(iii)/Fe(ii) reduction waves. © 2010 The Royal Society of Chemistry.

More Details

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications

Staiger, Chad L.; Lambert, Timothy N.; Hall, Aaron; Bencomo, Marlene; Stechel, Ellen B.

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

More Details

Summary report : universal fuel processor

Miller, James E.; Staiger, Chad L.; Cornelius, Christopher J.; Rice, Steven F.; Coker, Eric N.; Stewart, Constantine A.; Kemp, Richard; Pickett, Lyle M.

The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

More Details

Advanced proton-exchange materials for energy efficient fuel cells

Cornelius, Christopher J.; Hibbs, Michael; Fujimoto, Cy; Hickner, Michael A.; Staiger, Chad L.

The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

More Details

Bio micro fuel cell grand challenge final report

Apblett, Christopher A.; Novak, Jim; Hudgens, James J.; Podgorski, Jason; Brozik, Susan M.; Flemming, Jeb H.; Ingersoll, David; Eisenbies, Stephen E.; Shul, Randy J.; Cornelius, Christopher J.; Fujimoto, Cy; Schubert, William K.; Hickner, Michael A.; Volponi, Joanne V.; Kelly, Michael J.; Zavadil, Kevin R.; Staiger, Chad L.; Dolan, Patricia L.; Harper, Jason C.; Doughty, Daniel H.; Casalnuovo, Stephen A.; Kelley, John B.; Simmons, Blake; Borek, Theodore T.; Meserole, Stephen; Alam, Todd M.; Cherry, Brian R.; Roberts, Greg

Abstract not provided.

Photo-control of nanointeractions

Bell, Nelson S.; Jamison, Gregory M.; Marbury, Justin L.; Piech, Marcin P.; Thomes, William J.; Staiger, Chad L.

The manipulation of physical interactions between structural moieties on the molecular scale is a fundamental hurdle in the realization and operation of nanostructured materials and high surface area microsystem architectures. These include such nano-interaction-based phenomena as self-assembly, fluid flow, and interfacial tribology. The proposed research utilizes photosensitive molecular structures to tune such interactions reversibly. This new material strategy provides optical actuation of nano-interactions impacting behavior on both the nano- and macroscales and with potential to impact directed nanostructure formation, microfluidic rheology, and tribological control.

More Details
40 Results
40 Results