The locations of conductive regions in TaOx memristors are spatially mapped using a microbeam and Nanoimplanter by rastering an ion beam across each device while monitoring its resistance. Microbeam irradiation with 800 keV Si ions revealed multiple sensitive regions along the edges of the bottom electrode. The rest of the active device area was found to be insensitive to the ion beam. Nanoimplanter irradiation with 200 keV Si ions demonstrated the ability to more accurately map the size of a sensitive area with a beam spot size of 40 nm by 40 nm. Isolated single spot sensitive regions and a larger sensitive region that extends approximately 300 nm were observed.
Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.
Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.
The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we will instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.