Publications

Results 26–50 of 357

Search results

Jump to search filters

Discovery of Complex Binding and Reaction Mechanisms from Ternary Gases in Rare Earth Metal–Organic Frameworks

Chemistry - A European Journal

Christian, Matthew S.; Nenoff, Tina M.; Rimsza, Jessica

Understanding the selectivity of metal–organic frameworks (MOFs) to complex acid gas streams will enable their use in industrial applications. Herein, ab initio molecular dynamic simulations (AIMD) were used to simulate ternary gas mixtures (H2O-NO2-SO2) in rare earth 2,5-dihydroxyterephthalic acid (RE-DOBDC) MOFs. Stronger H2O gas-metal binding arose from thermal vibrations in the MOF sterically hindering access of SO2 and NO2 molecules to the metal sites. Gas-gas and gas-linker interactions within the MOF framework resulted in the formation of multiple secondary gas species including HONO, HNO2, NOSO, and HNO3−. Four gas adsorption sites were identified along with a new de-protonation reaction mechanism not observable through experiment. This study not only provides valuable information on competitive gas binding energies in the MOF, it also provides important chemical insights into transient chemical reactions and mechanisms.

More Details

Single Photon Detection with On-Chip Number Resolving Capability

Chatterjee, Eric; Davids, Paul; Nenoff, Tina M.; Pan, Wei; Rademacher, David X.; Soh, Daniel B.S.

Single photon detection (SPD) plays an important role in many forefront areas of fundamental science and advanced engineering applications. In recent years, rapid developments in superconducting quantum computation, quantum key distribution, and quantum sensing call for SPD in the microwave frequency range. We have explored in this LDRD project a new approach to SPD in an effort to provide deterministic photon-number-resolving capability by using topological Josephson junction structures. In this SAND report, we will present results from our experimental studies of microwave response and theoretical simulations of microwave photon number resolving detector in topological Dirac semimetal Cd3As2. These results are promising for SPD at the microwave frequencies using topological quantum materials.

More Details

Carbon Capture in Novel Porous Liquids

Rimsza, Jessica; Nenoff, Tina M.; Christian, Matthew S.; Hurlock, Matthew

Direct air capture (DAC) of CO2 is one of the negative emission technologies under development to limit the impacts of climate change. The dilute concentration of CO2 in the atmosphere (~400 ppm) requires new materials for carbon capture with increased CO2 selectivity that is not met with current materials. Porous liquids (PLs) are an emerging material that consist of a combination of solvents and porous hosts creating a liquid with permanent porosity. PLs have demonstrated excellent CO2 selectivity, but the features that control how and why PLs selectively capture CO2 is unknown. To elucidate these mechanisms, density functional theory (DFT) simulations were used to investigate two different PLs. The first is a ZIF-8 porous host in a water/glycol/2-methylimidazole solvent. The second is the CC13 porous organic cage with multiple bulky solvents. DFT simulations identified that in both systems, CO2 preferentially bound in the pore window rather than in the internal pore space, identifying that the solvent-porous host interface controls the CO2 selectivity. Additionally, SNL synthesized ZIF-8 based PL compositions. Evaluation of the long-term stability of the PL identified no change in the ZIF-8 crystallinity after multiple agitation cycles, identifying its potential for use in carbon capture systems. Through this project, SNL has developed a fundamental understanding of solvent-host interactions, as well as how and where CO2 binds in PLs. Through these results, future efforts will focus not on how CO2 behaves inside the pore, but on the porous host-solvent interface as the driving force for PL stability and CO2 selectivity.

More Details

Dramatic Enhancement of Rare-Earth Metal-Organic Framework Stability Via Metal Cluster Fluorination

JACS Au

Christian, Matthew S.; Fritzsching, Keith; Harvey, Jacob A.; Gallis, Dorina F.S.; Nenoff, Tina M.; Rimsza, Jessica

Rare-earth polynuclear metal-organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by μ3-OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8-16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ∼4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.

More Details

Crystal Prediction and Design of Tunable Light Emission in BTB-Based Metal-Organic Frameworks

Advanced Optical Materials

Rimsza, Jessica; Henkelis, Susan; Rohwer, Lauren E.S.; Gallis, Dorina F.S.; Nenoff, Tina M.

Metal-organic frameworks (MOFs) have recently been shown to exhibit unique mechanisms of luminescence based on charge transfer between structural units in the framework. These MOFs have the potential to be structural tuned for targeted emission with little or no metal participation. A computationally led, material design and synthesis methodology is presented here that elucidates the mechanisms of light emission in interpenetrated structures comprised of metal centers (M = In, Ga, InGa, InEu) and BTB (1,3,5-Tris(4-carboxyphenyl)benzene) linkers, forming unique luminescent M-BTB MOF frameworks. Gas phase and periodic electronic structure calculations indicate that the intensity of the emission and the wavelength are overwhelmingly controlled by a combination of the number of interacting stacked linkers and their interatomic spacings, respectively. In the MOF, the ionic radii of the metal centers primarily control the expansion or shrinkage of the linker stacking distances. Experimentally, multiple M-BTB-based MOFs are synthesized and their photoluminescence was tested. Experiments validated the modeling by confirming that shifts in the crystal structure result in variations in light emission. Through this material design method, the mechanisms of tuning luminescence properties in interpenetrated M-BTB MOFs have been identified and applied to the design of MOFs with specific wavelength emission based on their structure.

More Details

Evidence of decoupling of surface and bulk states in Dirac semimetal Cd3As2

Nanotechnology

Yu, W.; Rademacher, David X.; Valdez, Nichole R.; Rodriguez, Mark A.; Nenoff, Tina M.; Pan, Wei

Dirac semimetals have attracted a great deal of current interests due to their potential applications in topological quantum computing, low-energy electronic devices, and single photon detection in the microwave frequency range. Herein are results from analyzing the low magnetic (B) field weak-antilocalization behaviors in a Dirac semimetal Cd3As2 thin flake device. At high temperatures, the phase coherence length lΦ first increases with decreasing temperature (T) and follows a power law dependence of lΦ ∝ T–0.4. Below ~3 K, lΦ tends to saturate to a value of ~180 nm. Another fitting parameter α, which is associated with independent transport channels, displays a logarithmic temperature dependence for T > 3 K, but also tends to saturate below ~3 K. The saturation value, ~1.45, is very close to 1.5, indicating three independent electron transport channels, which we interpret as due to decoupling of both the top and bottom surfaces as well as the bulk. This result, to our knowledge, provides first evidence that the surfaces and bulk states can become decoupled in electronic transport in Dirac semimetal Cd3As2.

More Details
Results 26–50 of 357
Results 26–50 of 357