Publications

73 Results

Search results

Jump to search filters

Chemical Profiling of Volatile Organic Compounds in the Headspace of Algal Cultures as Early Biomarkers of Algal Pond Crashes

Scientific Reports

Reese, Kristen L.; Fisher, Carolyn L.; Lane, Pamela; Jaryenneh, James D.; Jones, A.D.; Frank, Matthias; Lane, Todd

Algae ponds used in industrial biomass production are susceptible to pathogen or grazer infestation, resulting in pond crashes with high economic costs. Current methods to monitor and mitigate unhealthy ponds are hindered by a lack of early indicators that precede culture crash. We used solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) to identify volatiles emitted from healthy and rotifer infested cultures of Microchloropsis salina. After 48 hours of algal growth, marine rotifers, Brachionus plicatilis, were added to the algae cultures and volatile organic compounds (VOC) were sampled from the headspace using SPME fibers. A GC-MS approach was used in an untargeted analysis of VOCs, followed by preliminary identification. The addition of B. plicatilis to healthy cultures of M. salina resulted in decreased algal cell numbers, relative to uninfected controls, and generated trans-β-ionone and β-cyclocitral, which were attributed to carotenoid degradation. The abundances of the carotenoid-derived VOCs increased with rotifer consumption of algae. Our results indicate that specific VOCs released by infected algae cultures may be early indicators for impending pond crashes, providing a useful tool to monitor algal biomass production and pond crash prevention.

More Details

Bacterial communities protect the alga Microchloropsis salina from grazing by the rotifer Brachionus plicatilis

Algal Research

Lane, Todd; Fisher, Carolyn L.; Ward, Christopher S.; Lane, Pamela; Kimbrel, Jeffrey A.; Sale, Kenneth L.; Stuart, Rhona K.; Mayali, Xavier

Open algal ponds are likely to succumb to unpredictable, devastating crashes by one or several deleterious species. Developing methodology to mitigate or prevent pond crashes will increase algal biomass production, drive down costs for algae farmers, and reduce the risk involved with algae cultivation, making it more favorable for investment by entrepreneurs and biotechnology companies. Here, we show that specific algal-bacterial co-cultures grown with the green alga Microchloropsis salina prevented grazing by the marine rotifer, Brachionus plicatilis. We obtained seven algal-bacterial co-cultures from crashed rotifer cultures, maintained them in co-culture with Microchloropsis salina, and used a microalgal survival assay to determine that algae present in each co-culture were protected from rotifer grazing and culture crash. After months of routinely diluting and maintaining these seven algal-bacterial co-cultures, we repeated the assay and found the opposite result: none of the seven bacterial communities protected the microalgae from rotifer grazing. We performed 16S rRNA gene amplicon sequencing on the protective and nonprotective co-culture samples and identified substantial differences in the makeup of the bacterial communities. Protective bacterial communities consisted primarily of Alphaproteobacteria (Rhodobacteraceae) and Gammaproteobacteria (Marinobacter, Pseudomonas, Methylophaga) while nonprotective bacterial communities were less diverse and missing many putatively crucial members. We compared the seven protective communities with the seven nonprotective communities and we correlated specific bacterial amplicon sequence variants with algal protection. With these data, our future work will aim to define and develop an engineered-microbiome that can stabilize industrial Microchloropsis salina cultures by protecting against grazer-induced pond crashes.

More Details

Facile processing of Microchloropsis salina biomass for phosphate recycle

Algal Research

Lane, Todd; Huysman, Nathan D.; Lane, Pamela; Liu, Fang; Siccardi, Anthony J.; Beal, Colin M.; Davis, Ryan

Algal biomass is a proposed feedstock for sustainable production of petroleum displacing commodities. However, production of 10% of US demand for liquid transportation fuel from algae would require a 60–150% increase over current agricultural demand for phosphorus fertilizers. Without efforts to recycle major nutrients, algal biomass production can be expected to catalyze a food versus fuel crisis. We have developed a novel and simple process for efficient liberation of phosphate from algal biomass and have demonstrated recycling at both laboratory and pilot scale, of up to 70% of total cellular phosphate from osmotically-shocked but non-denatured Microchloropsis salina biomass using a range of mild incubation conditions. The phosphate released in this process is bioavailable, can support the same level of algal growth as standard nutrients, and does not contain any growth inhibitory compounds as evidenced by its ability to support multiple sequential cycles of growth and remineralization.

More Details

[Europa Lander] Decontamination Methods Trade Study

Lane, Todd; Lane, Pamela

The following trade study was done to answer the following task from the Sandia JPL Collaboration for Europa Lander Statement of Work: Perform a trade study to assess the feasibility of other sterilization/decontamination methods for reducing forward biological contamination on S/C and assess their suitability for PP applications

More Details

Pond Crash Forensics: Presumptive identification of pond crash agents by next generation sequencing in replicate raceway mass cultures of Nannochloropsis salina

Algal Research

Lane, Todd; Lane, Pamela; Williams, Kelly P.; Wilkenfeld, Joshua S.; Solberg, Owen D.; Fuqua, Zachary B.; Cornelius, Nina G.; Gillespie, Shaunette; Samocha, Tzachi M.; Carney, Laura T.

Productivity of algal mass culture can be severely reduced by contaminating organisms. It is, therefore, important to identify contaminants, determine their effect on productivity and, ultimately, develop countermeasures against such contamination. In the present study we utilized microbiome analysis by second-generation sequencing of small subunit rRNA genes to characterize the predator and pathogen burden of open raceway cultures of Nannochloropsis salina. Samples were analyzed from replicate raceways before and after crashes. In one culture cycle, we identified two algivorous species, the rotifer Brachionus and gastrotrich Chaetonotus, the presence of which may have contributed to the loss of algal biomass. In the second culture cycle, the raceways were treated with hypochlorite in an unsuccessful attempt to interdict the crash. Our analyses were shown to be an effective strategy for the identification of the biological contaminants and the characterization of intervention strategies.

More Details

Peregrine: A rapid and unbiased method to produce strand-specific RNA-Seq libraries from small quantities of starting material

RNA Biology

Langevin, Stanley A.; Bent, Zachary; Solberg, Owen D.; Curtis, Deanna J.; Lane, Pamela; Williams, Kelly P.; Schoeniger, Joseph S.; Lane, Todd; Sinha, Anupama

Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows. © 2013 Landes Bioscience.

More Details

Characterization of Pathogens in Clinical Specimens via Suppression of Host Background for Efficient Second Generation Sequencing Analyses

Branda, Steven; Jebrail, Mais J.; Van De Vreugde, James L.; Langevin, Stanley A.; Bent, Zachary; Curtis, Deanna J.; Lane, Pamela; Carson, Bryan; La Bauve, Elisa; Patel, Kamlesh; Ricken, Bryce; Schoeniger, Joseph S.; Solberg, Owen D.; Williams, Kelly P.; Misra, Milind; Powell, Amy J.; Pattengale, Nicholas D.; May, Elebeoba; Lane, Todd; Lindner, Duane L.; Young, Malin M.; Vandernoot, Victoria A.; Thaitrong, Numrin; Bartsch, Michael S.; Renzi, Ronald F.; Tran-Gyamfi, Mary; Meagher, Robert M.

Abstract not provided.

Automated Molecular Biology Platform Enabling Rapid & Efficient SGS Analysis of Pathogens in Clinical Samples

Branda, Steven; Jebrail, Mais J.; Van De Vreugde, James L.; Langevin, Stanley A.; Bent, Zachary; Curtis, Deanna J.; Lane, Pamela; Carson, Bryan; La Bauve, Elisa; Patel, Kamlesh; Ricken, Bryce; Schoeniger, Joseph S.; Solberg, Owen D.; Williams, Kelly P.; Misra, Milind; Powell, Amy J.; Pattengale, Nicholas D.; May, Elebeoba; Lane, Todd; Lindner, Duane L.; Young, Malin M.; Vandernoot, Victoria A.; Thaitrong, Numrin; Bartsch, Michael S.; Renzi, Ronald F.; Tran-Gyamfi, Mary; Meagher, Robert M.

Abstract not provided.

Copy of Automated Molecular Biology Platform Enabling Rapid & Efficient SGS Analysis of Pathogens in Clinical Samples

Branda, Steven; Jebrail, Mais J.; Van De Vreugde, James L.; Langevin, Stanley A.; Bent, Zachary; Curtis, Deanna J.; Lane, Pamela; Carson, Bryan; La Bauve, Elisa; Patel, Kamlesh; Ricken, Bryce; Schoeniger, Joseph S.; Solberg, Owen D.; Williams, Kelly P.; Misra, Milind; Powell, Amy J.; Pattengale, Nicholas D.; May, Elebeoba; Lane, Todd; Lindner, Duane L.; Young, Malin M.; Vandernoot, Victoria A.; Thaitrong, Numrin; Bartsch, Michael S.; Renzi, Ronald F.; Tran-Gyamfi, Mary; Meagher, Robert M.

Abstract not provided.

Quantitative laboratory measurements of biogeochemical processes controlling biogenic calcite carbon sequestration

Lane, Pamela; Lane, Todd; Zendejas, Frank Z.

The purpose of this LDRD was to generate data that could be used to populate and thereby reduce the uncertainty in global carbon cycle models. These efforts were focused on developing a system for determining the dissolution rate of biogenic calcite under oceanic pressure and temperature conditions and on carrying out a digital transcriptomic analysis of gene expression in response to changes in pCO2, and the consequent acidification of the growth medium.

More Details

Hyperspectral imaging of oil producing microalgae under thermal and nutritional stress

Powell, Amy J.; Davis, Ryan W.; Lane, Todd; Lane, Pamela; Keenan, Michael R.; Van Benthem, Mark H.

This short-term, late-start LDRD examined the effects of nutritional deprivation on the energy harvesting complex in microalgae. While the original experimental plan involved a much more detailed study of temperature and nutrition on the antenna system of a variety of TAG producing algae and their concomitant effects on oil production, time and fiscal constraints limited the scope of the study. This work was a joint effort between research teams at Sandia National Laboratories, New Mexico and California. Preliminary results indicate there is a photosystem response to silica starvation in diatoms that could impact the mechanisms for lipid accumulation.

More Details

Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors

Schoeniger, Joseph S.; Ayson, Marites J.; Jacobsen, Rick B.; Lane, Pamela; Sale, Kenneth L.; Young, Malin M.

Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurement using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.

More Details
73 Results
73 Results