Publications

Results 9026–9050 of 99,299

Search results

Jump to search filters

Spatial organization of FcγR and TLR2/1 on phagosome membranes differentially regulates their synergistic and inhibitory receptor crosstalk

Scientific Reports

Li, Wenqian; Li, Miao; Anthony, Stephen M.; Yu, Yan

Many innate immune receptors function collaboratively to detect and elicit immune responses to pathogens, but the physical mechanisms that govern the interaction and signaling crosstalk between the receptors are unclear. In this study, we report that the signaling crosstalk between Fc gamma receptor (FcγR) and Toll-like receptor (TLR)2/1 can be overall synergistic or inhibitory depending on the spatial proximity between the receptor pair on phagosome membranes. Using a geometric manipulation strategy, we physically altered the spatial distribution of FcγR and TLR2 on single phagosomes. We demonstrate that the signaling synergy between FcγR and TLR2/1 depends on the proximity of the receptors and decreases as spatial separation between them increases. However, the inhibitory effect from FcγRIIb on TLR2-dependent signaling is always present and independent of receptor proximity. The overall cell responses are an integration from these two mechanisms. This study presents quantitative evidence that the nanoscale proximity between FcγR and TLR2 functions as a key regulatory mechanism in their signaling crosstalk.

More Details

Modeling Subsurface Explosions Recorded on a Distributed Fiber Optic Sensor

Journal of Geophysical Research: Solid Earth

Mellors, Robert J.; Abbott, Robert; Steedman, David; Podrasky, David; Pitarka, Arben

Fiber optic distributed acoustic sensors (DAS) are becoming a widely used tool for seismic sensing. Here we examine recordings of two subsurface chemical explosions, DAG-1 and DAG-3, each of which was about one metric ton (TNT equivalent), that were recorded from a helical fiber installed in two boreholes 80 m away from the source location. Several clear phases including the initial P wave, a weak S wave, and a surface reflected P wave are observed on the helical DAS data. We estimate a velocity model using arrival times measured from the fiber. The DAS waveform data were compared with colocated accelerometers at specific depths in both frequency and time domains. The spectra of the DAS data matched spectra estimated from the accelerometer records. Comparisons of observed waveform shape between the accelerometer records and the fiber measurements (strain-rate) show reasonable agreement except for the data near the event depth. The DAS data and the accelerometer agreed in relative amplitudes but we had difficulties in matching absolute amplitudes, possibly due to errors in metadata. Synthetic strain-rate waveforms were calculated using a 2D wavenumber algorithm and matched the waveform shape and relative amplitudes. In general, DAS is effective at recording strong ground motions at high spatial density. Comparison of the synthetic seismograms with observed data indicate that the waveforms are not consistent with a pure isotropic explosion source and that the observed S waves originate from very near the source region.

More Details

A multiplexed nanostructure-initiator mass spectrometry (NIMS) assay for simultaneously detecting glycosyl hydrolase and lignin modifying enzyme activities

Scientific Reports

Ing, Nicole; Deng, Kai; Chen, Yan; Aulitto, Martina; Gin, Jennifer W.; Pham, Thanh L.; Petzold, Christopher J.; Singer, Steve W.; Bowen, Benjamin; Sale, Kenneth L.; Simmons, Blake A.; Singh, Anup K.; Adams, Paul D.; Northen, Trent R.

Lignocellulosic biomass is composed of three major biopolymers: cellulose, hemicellulose and lignin. Analytical tools capable of quickly detecting both glycan and lignin deconstruction are needed to support the development and characterization of efficient enzymes/enzyme cocktails. Previously we have described nanostructure-initiator mass spectrometry-based assays for the analysis of glycosyl hydrolase and most recently an assay for lignin modifying enzymes. Here we integrate these two assays into a single multiplexed assay against both classes of enzymes and use it to characterize crude commercial enzyme mixtures. Application of our multiplexed platform based on nanostructure-initiator mass spectrometry enabled us to characterize crude mixtures of laccase enzymes from fungi Agaricus bisporus (Ab) and Myceliopthora thermophila (Mt) revealing activity on both carbohydrate and aromatic substrates. Using time-series analysis we determined that crude laccase from Ab has the higher GH activity and that laccase from Mt has the higher activity against our lignin model compound. Inhibitor studies showed a significant reduction in Mt GH activity under low oxygen conditions and increased activities in the presence of vanillin (common GH inhibitor). Ultimately, this assay can help to discover mixtures of enzymes that could be incorporated into biomass pretreatments to deconstruct diverse components of lignocellulosic biomass.

More Details

Solar wind contributions to Earth’s oceans

Nature Astronomy

Daly, Luke; Lee, Martin R.; Hallis, Lydia J.; Ishii, Hope A.; Bradley, John P.; Bland, Phillip A.; Saxey, David W.; Fougerouse, Denis; Rickard, William D.A.; Forman, Lucy V.; Timms, Nicholas E.; Jourdan, Fred; Reddy, Steven M.; Salge, Tobias; Zakaria; Quadir, Zakaria; Christou, Evangelos; Cox, Morgan A.; Aguiar, Jeffrey A.; Hattar, Khalid M.; Monterrosa, Anthony; Keller, Lindsay P.; Christoffersen, Roy; Dukes, Catherine A.; Loeffler, Mark J.; Thompson, Michelle S.

The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H+ irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m−3 of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios.

More Details

Integrated Optical Addressing of a Trapped Ytterbium Ion

Physical Review X

Ivory, Megan K.; Setzer, William J.; Mcguinness, Hayden J.E.; Derose, Christopher; Blain, Matthew G.; Gehl, Michael; Stick, Daniel L.; Karl, Nicholas J.; Parazzoli, Lambert P.

We report on the characterization of heating rates and photoinduced electric charging on a microfabricated surface ion trap with integrated waveguides. Microfabricated surface ion traps have received considerable attention as a quantum information platform due to their scalability and manufacturability. Here, we characterize the delivery of 435-nm light through waveguides and diffractive couplers to a single ytterbium ion in a compact trap. We measure an axial heating rate at room temperature of 0.78±0.05 q/ms and see no increase due to the presence of the waveguide. Furthermore, the electric field due to charging of the exposed dielectric outcoupler settles under normal operation after an initial shift. The frequency instability after settling is measured to be 0.9 kHz.

More Details

Micro-trench measurements of the net deposition of carbon impurity ions in the DIII-D divertor and the resulting suppression of surface erosion

Physica Scripta

Abe, S.; Skinner, C.H.; Bykov, I.; Guterl, J.; Lasa, A.; Yeh, Y.W.; Coburn, Jonathan D.; Lasnier, C.J.; Wang, H.Q.; Mclean, A.G.; Abrams, T.; Koel, B.E.

We report carbon impurity ion incident angles and deposition rates, along with silicon erosion rates, from measurements of micro-engineered trenches on a silicon surface exposed to L-mode deuterium plasmas at the DIII-D divertor. Post exposure ex-situ analysis determined elemental maps and concentrations, carbon deposition thicknesses, and erosion of silicon surfaces. Carbon deposition profiles on the trench floor showed carbon ion shadowing that was consistent with ERO calculations of average carbon ion angle distributions (IADs) for both polar and azimuthal angles. Measured silicon net erosion rates negatively correlated with the deposited carbon concentration at different locations. Differential erosion of surfaces on two different ion-downstream trench slope structures suggested that carbon deposition rate is affected by the carbon ion incident angle and significantly suppressed the surface erosion. The results suggest the C impurity ion incident angles, determined by the IADs and surface morphology, strongly affect erosion rates as well as the main ion (D, T, He) incident angles.

More Details

Friction of Metals: A Review of Microstructural Evolution and Nanoscale Phenomena in Shearing Contacts

Tribology Letters

Chandross, Michael E.; Argibay, Nicolas

The friction behavior of metals is directly linked to the mechanisms that accommodate deformation. We examine the links between mechanisms of strengthening, deformation, and the wide range of friction behaviors that are exhibited by shearing metal interfaces. Specifically, the focus is on understanding the shear strength of nanocrystalline and nanostructured metals, and conditions that lead to low friction coefficients. Grain boundary sliding and the breakdown of Hall–Petch strengthening at the shearing interface are found to generally and predictably explain the low friction of these materials. While the following is meant to serve as a general discussion of the strength of metals in the context of tribological applications, one important conclusion is that tribological research methods also provide opportunities for probing the fundamental properties and deformation mechanisms of metals.

More Details

Remote sensing detection enhancement

Journal of Big Data

Ma, Tian J.

Big Data in the area of Remote Sensing has been growing rapidly. Remote sensors are used in surveillance, security, traffic, environmental monitoring, and autonomous sensing. Real-time detection of small moving targets using a remote sensor is an ongoing, challenging problem. Since the object is located far away from the sensor, the object often appears too small. The object’s signal-to-noise-ratio (SNR) is often very low. Occurrences such as camera motion, moving backgrounds (e.g., rustling leaves), low contrast and resolution of foreground objects makes it difficult to segment out the targeted moving objects of interest. Due to the limited appearance of the target, it is tough to obtain the target’s characteristics such as its shape and texture. Without these characteristics, filtering out false detections can be a difficult task. Detecting these targets, would often require the detector to operate under a low detection threshold. However, lowering the detection threshold could lead to an increase of false alarms. In this paper, the author will introduce a new method that improves the probability to detect low SNR objects, while decreasing the number of false alarms as compared to using the traditional baseline detection technique.

More Details

Evaluating Manual Sampling Locations for Regulatory and Emergency Response

Journal of Water Resources Planning and Management

Haxton, Terranna; Klise, Katherine A.; Laky, Daniel; Murray, Regan; Laird, Carl D.; Burkhardt, Jonathan B.

Drinking water systems commonly use manual or grab sampling to monitor water quality, identify or confirm issues, and verify that corrective or emergency response actions have been effective. In this paper, the effectiveness of regulatory sampling locations for emergency response is explored. An optimization formulation based on the literature was used to identify manual sampling locations to maximize overall nodal coverage of the system. Results showed that sampling locations could be effective in confirming incidents for which they were not designed. When evaluating sampling locations optimized for emergency response against regulatory scenarios, the average performance was reduced by 3%-4%, while using optimized regulatory sampling locations for emergency response reduced performance by 7%-10%. Secondary constraints were also included in the formulation to ensure geographical and water age diversity with minimal impact on the performance. This work highlighted that regulatory sampling locations provide value in responding to an emergency for these networks.

More Details

Quantifying the unknown impact of segmentation uncertainty on image-based simulations

Nature Communications

Krygier, Michael; Labonte, Tyler; Martinez, Carianne; Norris, Chance; Sharma, Krish; Collins, Lincoln N.; Mukherjee, Partha P.; Roberts, Scott A.

Image-based simulation, the use of 3D images to calculate physical quantities, relies on image segmentation for geometry creation. However, this process introduces image segmentation uncertainty because different segmentation tools (both manual and machine-learning-based) will each produce a unique and valid segmentation. First, we demonstrate that these variations propagate into the physics simulations, compromising the resulting physics quantities. Second, we propose a general framework for rapidly quantifying segmentation uncertainty. Through the creation and sampling of segmentation uncertainty probability maps, we systematically and objectively create uncertainty distributions of the physics quantities. We show that physics quantity uncertainty distributions can follow a Normal distribution, but, in more complicated physics simulations, the resulting uncertainty distribution can be surprisingly nontrivial. We establish that bounding segmentation uncertainty can fail in these nontrivial situations. While our work does not eliminate segmentation uncertainty, it improves simulation credibility by making visible the previously unrecognized segmentation uncertainty plaguing image-based simulation.

More Details

Observation of bound states in the continuum embedded in symmetry bandgaps

Science Advances

Cerjan, Alexander; Jorg, Christina; Vaidya, Sachin; Augustine, Shyam; Benalcazar, Wladimir A.; Hsu, Chia W.; Von Freymann, Georg; Rechtsman, Mikael C.

In the past decade, symmetry-protected bound states in the continuum (BICs) have proven to be an important design principle for creating and enhancing devices reliant upon states with high-quality (Q) factors, such as sensors, lasers, and those for harmonic generation. However, as we show, current implementations of symmetry-protected BICs in photonic crystal slabs can only be found at the center of the Brillouin zone and below the Bragg diffraction limit, which fundamentally restricts their use to single-frequency applications. By microprinting a three-dimensional (3D) photonic crystal structure using two-photon polymerization, we demonstrate that this limitation can be overcome by altering the radiative environment surrounding the slab to be a 3D photonic crystal. This allows for the protection of a line of BICs by embedding it in a symmetry bandgap of the crystal. This concept substantially expands the design freedom available for developing next-generation devices with high-Q states.

More Details

Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions

Nature Communications

Hackett, Lisa A.P.; Miller, M.; Brimigion, Felicia M.; Dominguez, Daniel; Peake, Gregory M.; Tauke-Pedretti, Anna; Arterburn, Shawn C.; Friedmann, Thomas A.; Eichenfield, Matt

The addition of active, nonlinear, and nonreciprocal functionalities to passive piezoelectric acoustic wave technologies could enable all-acoustic and therefore ultra-compact radiofrequency signal processors. Toward this goal, we present a heterogeneously integrated acoustoelectric material platform consisting of a 50 nm indium gallium arsenide epitaxial semiconductor film in direct contact with a 41° YX lithium niobate piezoelectric substrate. We then demonstrate three of the main components of an all-acoustic radiofrequency signal processor: passive delay line filters, amplifiers, and circulators. Heterogeneous integration allows for simultaneous, independent optimization of the piezoelectric-acoustic and electronic properties, leading to the highest performing surface acoustic wave amplifiers ever developed in terms of gain per unit length and DC power dissipation, as well as the first-ever demonstrated acoustoelectric circulator with an isolation of 46 dB with a pulsed DC bias. Finally, we describe how the remaining components of an all-acoustic radiofrequency signal processor are an extension of this work.

More Details

Faster Johnson–Lindenstrauss transforms via Kronecker products

Information and Inference

Jin, Ruhui; Ward, Rachel; Kolda, Tamara G.

The Kronecker product is an important matrix operation with a wide range of applications in signal processing, graph theory, quantum computing and deep learning. In this work, we introduce a generalization of the fast Johnson–Lindenstrauss projection for embedding vectors with Kronecker product structure, the Kronecker fast Johnson–Lindenstrauss transform (KFJLT). The KFJLT reduces the embedding cost by an exponential factor of the standard fast Johnson–Lindenstrauss transform’s cost when applied to vectors with Kronecker structure, by avoiding explicitly forming the full Kronecker products. We prove that this computational gain comes with only a small price in embedding power: consider a finite set of p points in a tensor product of d constituent Euclidean spaces ⊗1k=d Rnk, and let N = Πdk=1 nk. With high probability, a random KFJLT matrix of dimension m × N embeds the set of points up to multiplicative distortion (1 ± ε) provided m ≿ ε−2 log2d−1 (p) log N. We conclude by describing a direct application of the KFJLT to the efficient solution of large-scale Kronecker-structured least squares problems for fitting the CP tensor decomposition.

More Details

Arrays of Si vacancies in 4H-SiC produced by focused Li ion beam implantation

Scientific Reports

Bielejec, Edward S.

Point defects in SiC are an attractive platform for quantum information and sensing applications because they provide relatively long spin coherence times, optical spin initialization, and spin-dependent fluorescence readout in a fabrication-friendly semiconductor. The ability to precisely place these defects at the optimal location in a host material with nano-scale accuracy is desirable for integration of these quantum systems with traditional electronic and photonic structures. Here, we demonstrate the precise spatial patterning of arrays of silicon vacancy (VSi) emitters in an epitaxial 4H-SiC (0001) layer through mask-less focused ion beam implantation of Li+. We characterize these arrays with high-resolution scanning confocal fluorescence microscopy on the Si-face, observing sharp emission lines primarily coming from the V1 ′ zero-phonon line (ZPL). The implantation dose is varied over 3 orders of magnitude, leading to VSi densities from a few per implantation spot to thousands per spot, with a linear dependence between ZPL emission and implantation dose. Optically-detected magnetic resonance (ODMR) is also performed, confirming the presence of V2 VSi. Our investigation reveals scalable and reproducible defect generation.

More Details

Simulations of ion heating due to ion-acoustic instabilities in presheaths

Physics of Plasmas

Beving, Lucas P.; Hopkins, Matthew M.; Baalrud, Scott D.

Particle-in-cell, direct simulation Monte Carlo simulations reveal that ion-acoustic instabilities excited in presheaths can cause significant ion heating. Ion-acoustic instabilities are excited by the ion flow toward a sheath when the neutral gas pressure is small enough and the electron temperature is large enough. A series of 1D simulations were conducted in which neutral plasma (electrons and ions) was uniformly sourced with an ion temperature of 0.026 eV and different electron temperatures (0.1 eV-50 eV). Ion heating was observed when the electron-to-ion temperature ratio exceeded the minimum value predicted by linear response theory to excite ion-acoustic instabilities at the sheath edge (T e / T i ≈ 28). When this threshold was exceeded, the temperature equilibration rate between ions and electrons rapidly increased near the sheath so that the local temperature ratio did not significantly exceed the threshold for instability. This resulted in significant ion heating near the sheath edge, which also extended back into the bulk plasma; presumably due to wave reflection from the sheath. This ion-acoustic wave heating mechanism was found to decrease for higher neutral pressures, where ion-neutral collisions damp the ion-acoustic waves and ion heating is instead dominated by inelastic collisions in the presheath.

More Details

Core-shell metallic alloy nanopillars-in-dielectric hybrid metamaterials with magneto-plasmonic coupling

Materials Today

Lu, Ping

Combining plasmonic and magnetic properties, namely magneto-plasmonic coupling, inspires great research interest and the search for magneto-plasmonic nanostructure becomes considerably critical. Here we designed a nanopillar-in-matrix structure with core–shell alloyed nanopillars for both BaTiO3 (BTO)-Au0.5Co0.5 (AuCo) and BTO-Au0.25Cu0.25Co0.25Ni0.25 (AuCuCoNi) hybrid systems, i.e., ferromagnetic alloy cores (e.g., Co or CoNi) with plasmonic shells (e.g., Au or Au/Cu). These core–shell alloy nanopillars are uniformly embedded into a dielectric BTO matrix to form a vertically aligned nanocomposite (VAN) structure. Both hybrid systems present excellent epitaxial quality and interesting multi-functionality, e.g., high magnetic anisotropy, magneto-optical coupling response, tailorable plasmonic resonance wavelength, tunable hyperbolic properties and strong optical anisotropy. These alloyed nanopillars-in-matrix designs provide enormous potential for complex hybrid material designs with multi-functionality and demonstrate strong interface enabled magneto-plasmonic coupling along with plasmonic and magnetic performance.

More Details

Spontaneous dynamical disordering of borophenes in MgB2 and related metal borides

Nature Communications

Stavila, Vitalie

More Details

Penetration through Slots in Overmoded Cavities

IEEE Transactions on Electromagnetic Compatibility

Campione, Salvatore; Warne, Larry K.

A resonant cavity undergoes three distinct behaviors with increasing frequency: 1) fundamental modes, localized in frequency with well defined modal distribution; 2) undermoded region, where modes are still separated, but are sufficiently perturbed by small imperfections that their spectral positions (and distributions) are statistical in nature; and 3) overmoded region, where modes overlap, field distributions follow stochastic distributions, and the slot acts as if in free space. Understanding the penetration through slots in the overmoded region is of great interest, and is the focus of this article. Since full-wave solvers may not be able to provide a timely answer for very high frequencies due to a lack of memory and/or computation resources, we develop bounding methods to estimate worst-case average and maximum fields within the cavity. After discussing the bounding formulation, we compare its results to full-wave simulations at the first, second, and third resonance supported by the slot in the case of a cylindrical cavity. Note that the bounding formulation indicates that results are nearly independent of cavity shape: only the cavity volume, frequency, and cavity quality factor affect the overmoded region, making this formulation a powerful tool to assess electromagnetic interference and electromagnetic compatibility effects within cavities.

More Details
Results 9026–9050 of 99,299
Results 9026–9050 of 99,299