Rechargeable Zn metal batteries (RZMBs) may provide a more sustainable and lower-cost alternative to established battery technologies in meeting energy storage applications of the future. However, the most promising electrolytes for RZMBs are generally aqueous and require high concentrations of salt(s) to bring efficiencies toward commercially viable levels and mitigate water-originated parasitic reactions including hydrogen evolution and corrosion. Electrolytes based on nonaqueous solvents are promising for avoiding these issues, but full cell performance demonstrations with solvents other than water have been very limited. To address these challenges, we investigated MeOH as an alternative electrolyte solvent. These MeOH-based electrolytes exhibited exceptional Zn reversibility over a wide temperature range, with a Coulombic efficiency > 99.5% at 50% Zn utilization without cell short-circuit behavior for > 1,800 h. More important, this remarkable performance translates well to Zn jj metal-free organic cathode full cells, supporting < 6% capacity decay after > 800 cycles at 240 °C.
This quick note outlines what we found after our conversion with you and your team. As suggested, we loaded 1547-2003 source requirements document (SRD) and then went back and loaded 1547-2018 SRD. This did result in implementing the new 1547-2018 settings. This short report focuses on the frequency-watt function and shows a couple of screen shots of the parameter settings via the Mojave HMI interface and plots of the results of the inverter with FW function enabled in both default and most aggressive settings response to frequency events. The first screen shot shows the 1547-2018 selected after selecting 1547-2003.
We propose a new scheme for simulation of collisions with multiple possible outcomes in variable-weight DSMC computations. The scheme is applied to a 0-D ionization rate coefficient computation, and 1-D electrical breakdown simulation. We show that the scheme offers a significant (up to an order of magnitude) improvement in the level of stochastic noise over the usual acceptance-rejection algorithm, even when controlling for the slight additional computational costs. Furthermore, the benefits and performance of the scheme are analyzed in detail, and possible extensions are proposed.
Thermodynamic modeling has been used to predict chemical compositions of brines formed by the deliquescence of sea salt aerosols. Representative brines have been mixed, and physical and chemical properties have been measured over a range of temperatures. Brine properties are discussed in terms of atmospheric corrosion of austenitic stainless steel, using spent nuclear fuel dry storage canisters as an example. After initial loading with spent fuel, during dry storage, the canisters cool over time, leading to increased surface relative humidities and evolving brine chemistries and properties. These parameters affect corrosion kinetics and damage distributions, and may offer important constraints on the expected timing, rate, and long-term impacts of canister corrosion.
Attia, Peter M.; Bills, Alexander; Brosa Planella, Ferran; Dechent, Philipp; Dos Reis, Goncalo; Dubarry, Matthieu; Gasper, Paul; Gilchrist, Richard; Greenbank, Samuel; Howey, David; Liu, Ouyang; Khoo, Edwin; Preger, Yuliya; Soni, Abhishek; Stefanopoulou, Anna G.; Sulzer, Valentin
Lithium-ion batteries can last many years but sometimes exhibit rapid, nonlinear degradation that severely limits battery lifetime. In this work, we review prior work on “knees” in lithium-ion battery aging trajectories. We first review definitions for knees and three classes of “internal state trajectories” (termed snowball, hidden, and threshold trajectories) that can cause a knee. We then discuss six knee “pathways”, including lithium plating, electrode saturation, resistance growth, electrolyte and additive depletion, percolation-limited connectivity, and mechanical deformation—some of which have internal state trajectories with signals that are electrochemically undetectable. Additionally, we also identify key design and usage sensitivities for knees. Finally, we discuss challenges and opportunities for knee modeling and prediction. Our findings illustrate the complexity and subtlety of lithium-ion battery degradation and can aid both academic and industrial efforts to improve battery lifetime.
Here, we report the first nonjellium, systematic, density functional theory (DFT) study of intrinsic and extrinsic defects and defect levels in zinc-blende (cubic) gallium nitride. We use the local moment counter charge (LMCC) method, the standard Perdew-Becke-Ernzerhoff (PBE) exchange-correlation potential, and two pseudopotentials, where the Ga 3$\textit{d}$ orbitals are either in the core ($d^0$) or explicitly in the valence set ($d^{10}$). We studied 64, 216, 512, and 1000 atom supercells, and demonstrated convergence to the infinite limit, crucial for delineating deep from shallow states near band edges, and for demonstrating the elimination of finite cell-size errors. Contrary to common claims, we find that exact exchange is not required to obtain defect levels across the experimental band gap. As was true in silicon, silicon carbide, and gallium arsenide, the extremal LMCC defect levels of the aggregate of defects yield an effective LMCC defect band gap that is within 10% of the experimental gap (3.3 eV) for both pseudopotentials. We demonstrate that the gallium vacancy is more complicated than previously reported. There is dramatic metastability–a nearest-neighbor nitrogen atom shifts into the gallium site, forming an antisite, nitrogen vacancy pair, which is more stable than the simple vacancy for positive charge states. Our assessment of the $d^0$ and $d^{10}$ pseudopotentials yields minimal differences in defect structures and defect levels. The better agreement of the $d^0$ lattice constant with experiment suggests that the more computationally economical $d^0$ pseudopotentials are sufficient to achieve the fidelity possible within the physical accuracy of DFT, and thereby enable calculations in larger supercells necessary to demonstrate convergence with respect to finite size supercell errors.
Chemomechanical processes such as water weakening can control the permeability and deformation of rocks and manmade materials. Here, atomistic modeling and nanomechanical experiments were used to identify molecular origins of chemomechanical effects in calcium oxide (CaO) and its effect on observed elastic, plastic, and brittle deformation. Classical molecular dynamics simulations with the bond order-based reactive force-field ReaxFF were used to assess brittle fracture. In the presence of water, CaO fractured earlier and more often during quasi-static loading, with a calculated reduction in fracture toughness of ∼80% associated with changes in the stress distribution around the crack tip. Experimentally, elastic and plastic deformation of CaO surfaces exposed to water was assessed experimentally using in situ liquid nanoindentation. Nanoindentation showed that following exposure to water, the contact hardness decreased by 1-2 orders of magnitude and decreased the modulus by 2-3 orders of magnitude due to surface hydroxylation. The strong chemomechanical effects on the mechanical processes in CaO suggests that minerals with similar structures may exhibit comparable effects, influencing the stability of cements and geomaterials.
Michael, Joseph R.; Perry, Daniel L.; Cummings, Damion P.; Walraven, Jeremy A.; Jordan, Matthew B.
Indium (In) and other low melting point metals are used as interconnects in a variety of hybridized circuits and a full understanding of the metallurgy of these interconnects is important to the reliability and performance of the devices. This paper shows that room temperature focused ion beam (FIB) preparation of cross-sections, using Ga+ or Xe+ can result in artifacts that obscure the true In microbump structure. The use of modified milling strategies to minimize the increased local sample temperature are shown to produce cross-sections that are representative of the In bump microstructure in some sample configurations. Furthermore, cooling of the sample to cryogenic temperatures is shown to reliably eliminate artifacts in FIB prepared cross-sections of In bumps allowing the true bump microstructure to be observed.
Yip, Ho L.; Srna, Ales; Wehrfritz, Armin; Kook, Sanghoon; Hawkes, Evatt R.; Chan, Qing N.
This study examines the flame evolution of autoigniting H2 jets with high-speed schlieren and OH∗ chemiluminescence optical methods in a constant-volume combustion chamber over a wide range of simulated compression-ignition engine conditions. Parametric variations include the injector nozzle orifice diameter (0.31–0.83 mm), injection reservoir pressure (100–200 bar), ambient temperature (1000–1140 K), density (12.5–24 kg/m3) and O2 concentration (10–21 vol.%). The jet ignition delay was found to be highly sensitive to changes in ambient temperature while all other parameter variations resulted in minor ignition delay changes. Optical imaging reveals that in most cases, the reaction front of the H2 jet initiates from a localised kernel, before engulfing the entire jet volume downstream and recessing towards the nozzle. The flames attach to the nozzle, except at the lowest ambient oxygen condition of 10 vol.% O2 for which a lifted flame is observed. The H2 diffusion flame length shows a dependence on both the mass flow rate and the level of O2 entrainment that follows the same correlations as previously established for atmospheric H2 jet flames.
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.
Multiferroic materials are an interesting functional material family combining two ferroic orderings, e.g., ferroelectric and ferromagnetic orderings, or ferroelectric and antiferromagnetic orderings, and find various device applications, such as spintronics, multiferroic tunnel junctions, etc. Coupling multiferroic materials with plasmonic nanostructures offers great potential for optical-based switching in these devices. Here, we report a novel nanocomposite system consisting of layered Bi1.25AlMnO3.25 (BAMO) as a multiferroic matrix and well dispersed plasmonic Au nanoparticles (NPs) and demonstrate that the Au nanoparticle morphology and the nanocomposite properties can be effectively tuned. Specifically, the Au particle size can be tuned from 6.82 nm to 31.59 nm and the 6.82 nm one presents the optimum ferroelectric and ferromagnetic properties and plasmonic properties. Besides the room temperature multiferroic properties, the BAMO-Au nanocomposite system presents other unique functionalities including localized surface plasmon resonance (LSPR), hyperbolicity in the visible region, and magneto-optical coupling, which can all be effectively tailored through morphology tuning. This study demonstrates the feasibility of coupling single phase multiferroic oxides with plasmonic metals for complex nanocomposite designs towards optically switchable spintronics and other memory devices.
Once limited to chain-growth polymerizations, fine control over polymerization-induced phase separation (PIPS) has recently been demonstrated in rubber-toughened thermoset materials formed through step-growth polymerizations. The domain length scales of these thermoset materials can be elegantly tuned by utilizing a binary mixture of curing agents (CAs) that individually yield disparate morphologies. Importantly, varying the composition of the binary mixture affects characteristics of the materials such as glass transition temperature and tensile behavior. Here, we establish a full phase diagram of PIPS in a rubber-toughened epoxy system tuned by a binary CA mixture to provide a robust framework of phase behaviour. X-Ray scattering in situ and post-PIPS is employed to elucidate the PIPS mechanism whereby an initial polymerization-induced compositional fluctuation causes nanoscale phase separation of rubber and epoxy components prior to local chain crosslinking and potential macrophase separation. We further demonstrate the universality of this approach by alternatively employing binary epoxy or binary rubber mixtures to achieve broad variations in morphology and glass transitions.
Edgell, Dana H.; Colaitis, Arnaud; Guardalben, Mark J.; Kalb, Adam; Katz, Joe; Kwiatkowski, Joe; Mannion, Owen M.; Shvydky, Alex; Stoeckl, Christian; Turnbull, David; Froula, Dustin H.
Three dimensional polarization-dependent CBET plus beam balance and pointing are required to model nonuniformity in direct-drive implosions on OMEGA. Uniform laser energy absorption is essential for successful laser-direct-drive inertial confinement fusion but a growing body of evidence suggests OMEGA implosions are more asymmetric than predictions. By measuring the intensity and polarization of light scattered from individual beams, we have identified OMEGA’s polarization smoothing via distributed polarization rotators (DPR’s) as one previously unrealized source of nonuniformity. Polarization-dependent CBET along with beam energy balance, and beam pointing require three-dimensional modeling. Laser absorption mode 1 predictions from a fully three-dimensional CBET model correlate well with the observed direction of the core flow.
This report presents a specification for the Portals 4 network programming interface. Portals 4 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4 is well suited to massively parallel processing and embedded systems. Portals 4 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4 is targeted to the next generation of machines employing advanced network interface architectures that support enhanced offload capabilities.