Publications

Results 4826–4850 of 99,299

Search results

Jump to search filters

Fundamentals of hydrogen storage in nanoporous materials

Progress in Energy

Zhang, Linda; Allendorf, Mark; Balderas-Xicohtencatl, Rafael; Broom, Darren P.; Fanourgakis, George S.; Froudakis, George E.; Gennett, Thomas; Hurst, Katherine E.; Ling, Sanliang; Milanese, Chiara; Parilla, Philip A.; Pontiroli, Daniele; Ricco, Mauro; Shulda, Sarah; Stavila, Vitalie; Steriotis, Theodore A.; Webb, Colin J.; Witman, Matthew D.; Hirscher, Michael

Physisorption of hydrogen in nanoporous materials offers an efficient and competitive alternative for hydrogen storage. At low temperatures (e.g. 77 K) and moderate pressures (below 100 bar) molecular H2 adsorbs reversibly, with very fast kinetics, at high density on the inner surfaces of materials such as zeolites, activated carbons and metal-organic frameworks (MOFs). This review, by experts of Task 40 ‘Energy Storage and Conversion based on Hydrogen’ of the Hydrogen Technology Collaboration Programme of the International Energy Agency, covers the fundamentals of H2 adsorption in nanoporous materials and assessment of their storage performance. The discussion includes recent work on H2 adsorption at both low temperature and high pressure, new findings on the assessment of the hydrogen storage performance of materials, the correlation of volumetric and gravimetric H2 storage capacities, usable capacity, and optimum operating temperature. The application of neutron scattering as an ideal tool for characterising H2 adsorption is summarised and state-of-the-art computational methods, such as machine learning, are considered for the discovery of new MOFs for H2 storage applications, as well as the modelling of flexible porous networks for optimised H2 delivery. The discussion focuses moreover on additional important issues, such as sustainable materials synthesis and improved reproducibility of experimental H2 adsorption isotherm data by interlaboratory exercises and reference materials.

More Details

Computational Imaging for Intelligence in Highly Scattering Aerosols (Final Report)

Bentz, Brian Z.; Wright, Jeremy B.; Foulk, James W.; Sanchez, Andres L.; Pattyn, Christian A.; Foulk, James W.; Redman, Brian J.; Deneke, Elihu; Glen, Andrew G.; Westlake, Karl; Hastings, Ryan L.; Lacny, Christopher M.; Alexander, David W.; Webb, Kevin J.

Natural and man-made degraded visual environments pose major threats to national security. The random scattering and absorption of light by tiny particles suspended in the air reduces situational awareness and causes unacceptable down-time for critical systems and operations. To improve the situation, we have developed several approaches to interpret the information contained within scattered light to enhance sensing and imaging in scattering media. These approaches were tested at the Sandia National Laboratory Fog Chamber facility and with tabletop fog chambers. Computationally efficient light transport models were developed and leveraged for computational sensing. The models are based on a weak angular dependence approximation to the Boltzmann or radiative transfer equation that appears to be applicable in both the moderate and highly scattering regimes. After the new model was experimentally validated, statistical approaches for detection, localization, and imaging of objects hidden in fog were developed and demonstrated. A binary hypothesis test and the Neyman-Pearson lemma provided the highest theoretically possible probability of detection for a specified false alarm rate and signal-to-noise ratio. Maximum likelihood estimation allowed estimation of the fog optical properties as well as the position, size, and reflection coefficient of an object in fog. A computational dehazing approach was implemented to reduce the effects of scatter on images, making object features more readily discernible. We have developed, characterized, and deployed a new Tabletop Fog Chamber capable of repeatably generating multiple unique fog-analogues for optical testing in degraded visual environments. We characterized this chamber using both optical and microphysical techniques. In doing so we have explored the ability of droplet nucleation theory to describe the aerosols generated within the chamber, as well as Mie scattering theory to describe the attenuation of light by said aerosols, and correlated the aerosol microphysics to optical properties such as transmission and meteorological optical range (MOR). This chamber has proved highly valuable and has supported multiple efforts inclusive to and exclusive of this LDRD project to test optics in degraded visual environments. Circularly polarized light has been found to maintain its polarization state better than linearly polarized light when propagating through fog. This was demonstrated experimentally in both the visible and short-wave infrared (SWIR) by imaging targets made of different commercially available retroreflective films. It was found that active circularly polarized imaging can increase contrast and range compared to linearly polarized imaging. We have completed an initial investigation of the capability for machine learning methods to reduce the effects of light scattering when imaging through fog. Previously acquired experimental long-wave images were used to train an autoencoder denoising architecture. Overfitting was found to be a problem because of lack of variability in the object type in this data set. The lessons learned were used to collect a well labeled dataset with much more variability using the Tabletop Fog Chamber that will be available for future studies. We have developed several new sensing methods using speckle intensity correlations. First, the ability to image moving objects in fog was shown, establishing that our unique speckle imaging method can be implemented in dynamic scattering media. Second, the speckle decorrelation over time was found to be sensitive to fog composition, implying extensions to fog characterization. Third, the ability to distinguish macroscopically identical objects on a far-subwavelength scale was demonstrated, suggesting numerous applications ranging from nanoscale defect detection to security. Fourth, we have shown the capability to simultaneously image and localize hidden objects, allowing the speckle imaging method to be effective without prior object positional information. Finally, an interferometric effect was presented that illustrates a new approach for analyzing speckle intensity correlations that may lead to more effective ways to localize and image moving objects. All of these results represent significant developments that challenge the limits of the application of speckle imaging and open important application spaces. A theory was developed and simulations were performed to assess the potential transverse resolution benefit of relative motion in structured illumination for radar systems. Results for a simplified radar system model indicate that significant resolution benefits are possible using data from scanning a structured beam over the target, with the use of appropriate signal processing.

More Details

Reconfiguration of the Respiratory Tract Microbiome to Prevent and Treat Burkholderia Infection

Branda, Steven; Collette, Nicole; Aiosa, Nicole; Garg, Neha; Mageeney, Catherine M.; Williams, Kelly P.; Phillips, Ashlee; Hern, Kelsey; Arkin, Adam; Ricken, Bryce; Wilde, Delaney; Dogra, Sahiba; Humphrey, Brittany; Poorey, Kunal; Courtney, Colleen

New approaches to preventing and treating infections, particularly of the respiratory tract, are needed. One promising strategy is to reconfigure microbial communities (microbiomes) within the host to improve defense against pathogens. Probiotics and prebiotics for gastrointestinal (GI) infections offer a template for success. We sought to develop comparable countermeasures for respiratory infections. First, we characterized interactions between the airway microbiome and a biodefense-related respiratory pathogen (Burkholderia thailandensis; Bt), using a mouse model of infection. Then, we recovered microbiome constituents from the airway and assessed their ability to re-colonize the airway and protect against respiratory Bt infection. We found that microbiome constituents belonging to Bacillus and related genuses frequently displayed colonization and anti-Bt activity. Comparative growth requirement profiling of these Bacillus strains vs Bt enabled identification of candidate prebiotics. This work serves as proof of concept for airway probiotics, as well as a strong foundation for development of airway prebiotics.

More Details
Results 4826–4850 of 99,299
Results 4826–4850 of 99,299