Publications

Results 4626–4650 of 96,771

Search results

Jump to search filters

Solid particulate mass and number from ducted fuel injection in an optically accessible diesel engine in skip-fired operation

International Journal of Engine Research

Wilmer, Brady M.; Nilsen, Christopher W.; Biles, Drummond E.; Mueller, Charles J.; Northrop, William F.

Ducted fuel injection (DFI) is a novel combustion strategy that has been shown to significantly attenuate soot formation in diesel engines. While previous studies have used optical diagnostics and optical filter smoke number methods to show that DFI reduces in-cylinder soot formation and engine-out soot emissions, respectively, this is the first study to measure solid particle number (PN) emissions in addition to particle mass (PM). Furthermore, this study quantitatively evaluates the use of transient particle instruments for measuring particles from skip-fired operation in an optical single cylinder research engine (SCRE). Engine-out PN was measured using an engine exhaust particle sizer following a catalytic stripper, and PM was measured using a photoacoustic analyzer. The study improves on earlier preliminary emissions studies by clearly showing that DFI reduces overall PM by 76%–79% and PN for particles larger than 23 nm by 77% relative to conventional diesel combustion at a 1200-rpm, 13.3-bar gross indicated mean effective pressure operating condition. The degree of engine-out PM reduction with DFI was similar across both particulate measurement instruments used in the work. Through the use of bimodal distribution fitting, DFI was also shown to reduce the geometric mean diameter of accumulation mode particles by 26%, similar to the effects of increased injection pressure in conventional diesel combustion systems. This work clearly shows the significant solid particulate matter reductions enabled by DFI while also demonstrating that engine-out PN can be accurately measured from an optical SCRE operating in a skip-fired mode. Based on these results, it is believed that DFI has the potential to enable fuel savings when implemented in multi-cylinder engines, both by lowering the required frequency of active diesel particulate filter regeneration, and by reducing the backpressure imposed by exhaust filtration systems.

More Details

Incipient Melting in AA7075

Brehm, Johnathon R.; Buckner, Jessica L.; Profazi, Christina A.; Laros, James H.

Incipient melting is a phenomenon that can occur in aluminum alloys where solute rich areas, such as grain boundaries, can melt before the rest of the material; incipient melting can degrade mechanical and corrosion properties and is irreversible, resulting in material scrapping. After detecting indications of incipient melting as the cause of failure in 7075 aluminum alloy parts (AA7075), a study was launched to determine threshold temperature for incipient melting. Samples of AA7075 were solution annealed using temperatures ranging from 870-1090F. A hardness profile was developed to demonstrate the loss of mechanical properties through the progression of incipient melting. Additionally, Zeiss software Zen Core Intellesis was utilized to more accurately quantify the changes in microstructural properties as AA7075 surpassed the onset of incipient melting. The results from this study were compared with previous AA7075 material that demonstrated incipient melting.

More Details

Magnetic properties of equiatomic CrMnFeCoNi

Physical Review B

Elmslie, Timothy A.; Startt, Jacob K.; Soto-Medina, Sujeily; Feng, Keke; Zappala, Emma; Frandsen, Benjamin A.; Meisel, Mark W.; Dingreville, Remi P.; Hamlin, James J.

Magnetic, specific heat, and structural properties of the equiatomic Cantor alloy system are reported for temperatures between 5 and 300 K, and up to fields of 70 kOe. Magnetization measurements performed on as-cast, annealed, and cold-worked samples reveal a strong processing history dependence and that high-temperature annealing after cold working does not restore the alloy to a "pristine"state. Measurements on known precipitates show that the two transitions, detected at 43 and 85 K, are intrinsic to the Cantor alloy and not the result of an impurity phase. Experimental and ab initio density functional theory computational results suggest that these transitions are a weak ferrimagnetic transition and a spin-glass-like transition, respectively, and magnetic and specific heat measurements provide evidence of significant Stoner enhancement and electron-electron interactions within the material.

More Details

Automating Component-Level Stress Measurements for Inverter Reliability Estimation

Energies

Flicker, Jack D.; Johnson, Jay; Hacke, Peter; Thiagarajan, Ramanathan

In the near future, grid operators are expected to regularly use advanced distributed energy resource (DER) functions, defined in IEEE 1547-2018, to perform a range of grid-support operations. Many of these functions adjust the active and reactive power of the device through commanded or autonomous operating modes which induce new stresses on the power electronics components. In this work, an experimental and theoretical framework is introduced which couples laboratory-measured component stress with advanced inverter functionality and derives a reduction in useful lifetime based on an applicable reliability model. Multiple DER devices were instrumented to calculate the additional component stress under multiple reactive power setpoints to estimate associated DER lifetime reductions. A clear increase in switch loss was demonstrated as a function of irradiance level and power factor. This is replicated in the system-level efficiency measurements, although magnitudes were different—suggesting other loss mechanisms exist. Using an approximate Arrhenius thermal model for the switches, the experimental data indicate a lifetime reduction of 1.5% when operating the inverter at 0.85 PF—compared to unity PF—assuming the DER failure mechanism thermally driven within the H-bridge. If other failure mechanisms are discovered for a set of power electronics devices, this testing and calculation framework can easily be tailored to those failure mechanisms.

More Details
Results 4626–4650 of 96,771
Results 4626–4650 of 96,771