ICS Data Information Gathering
Abstract not provided.
Abstract not provided.
The objective of this project was to develop a novel capability to generate synthetic data sets for the purpose of training Machine Learning (ML) algorithms for the detection of malicious activities on satellite systems. The approach experimented with was to a) generate sparse data sets using emulation modeling and b) enlarge the sparse data using Generative Adversarial Networks (GANs). We based our emulation modeling on the Open Source NASA Operational Simulator for Small Satellites (NOS3) developed by the Katherine Johnson Independent Verification and Validation (IV&V) program in West Virginia. Significant new capabilities on NOS3 had to be developed for our data set generation needs. To expand these data sets for the purpose of training ML, we experimented with a) Extreme Learning Machines (ELMs) and b) Wasserstein-GANs (WGAN-GP).
Abstract not provided.
Software flaw detection using multimodal deep learning models has been demonstrated as a very competitive approach on benchmark problems. In this work, we demonstrate that even better performance can be achieved using neural architecture search (NAS) combined with multimodal learning models. We adapt a NAS framework aimed at investigating image classification to the problem of software flaw detection and demonstrate improved results on the Juliet Test Suite, a popular benchmarking data set for measuring performance of machine learning models in this problem domain.
Software flaw detection using multimodal deep learning models has been demonstrated as a very competitive approach on benchmark problems. In this work, we demonstrate that even better performance can be achieved using neural architecture search (NAS) combined with multimodal learning models. We adapt a NAS framework aimed at investigating image classification to the problem of software flaw detection and demonstrate improved results on the Juliet Test Suite, a popular benchmarking data set for measuring performance of machine learning models in this problem domain.
We explore the use of multiple deep learning models for detecting flaws in software programs. Current, standard approaches for flaw detection rely on a single representation of a software program (e.g., source code or a program binary). We illustrate that, by using techniques from multimodal deep learning, we can simultaneously leverage multiple representations of software programs to improve flaw detection over single representation analyses. Specifically, we adapt three deep learning models from the multimodal learning literature for use in flaw detection and demonstrate how these models outperform traditional deep learning models. We present results on detecting software flaws using the Juliet Test Suite and Linux Kernel.
Abstract not provided.