Publications

Results 3826–3850 of 96,771

Search results

Jump to search filters

Neuromorphic Information Processing by Optical Media

Leonard, Francois L.; Fuller, Elliot J.; Teeter, Corinne M.; Vineyard, Craig M.

Classification of features in a scene typically requires conversion of the incoming photonic field int the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ x 100λ with aperture density λ-2 achieve ~96% testing accuracy on the MNIST dataset, for an optimized distance ~100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.

More Details

Interactive Unmanned Aircraft System (UAS) Security Workshop

Burr, Casey E.

The goal of this workshop is to role play and walk through various UAS incursion scenarios to: 1. Recognize the complex interactions between physical protection, response, and UAS technologies in a nuclear security event; 2. Identify potential regulatory and legal complications dealing with UAS as aircraft; 3. Identify communication/coordination touch points with facility security and law enforcement; 4. Identify possible physical security and response strategies to help mitigate UAS impact.

More Details

Sensitivity Analysis for Solutions to Heterogeneous Nonlocal Systems. Theoretical and Numerical Studies

Journal of Peridynamics and Nonlocal Modeling

Buczkowski, Nicole E.; Foss, Mikil D.; Parks, Michael L.; Radu, Petronela

The paper presents a collection of results on continuous dependence for solutions to nonlocal problems under perturbations of data and system parameters. The integral operators appearing in the systems capture interactions via heterogeneous kernels that exhibit different types of weak singularities, space dependence, even regions of zero-interaction. The stability results showcase explicit bounds involving the measure of the domain and of the interaction collar size, nonlocal Poincaré constant, and other parameters. In the nonlinear setting, the bounds quantify in different Lp norms the sensitivity of solutions under different nonlinearity profiles. The results are validated by numerical simulations showcasing discontinuous solutions, varying horizons of interactions, and symmetric and heterogeneous kernels.

More Details

The Power of Priors: Improved Enrichment Safeguards

Shoman, Nathan; Honnold, Philip H.

International safeguards currently rely on material accountancy to verify that declared nuclear material is present and unmodified. Although effective, material accountancy for large bulk facilities can be expensive to implement due to the high precision instrumentation required to meet regulatory targets. Process monitoring has long been considered to improve material accountancy. However, effective integration of process monitoring has been met with mixed results. Given the large successes in other domains, machine learning may present a solution for process monitoring integration. Past work has shown that unsupervised approaches struggle due to measurement error. Although not studied in depth for a safeguards context, supervised approaches often have poor generalization for unseen classes of data (e.g., unseen material loss patterns). This work shows that engineered datasets, when used for training, can improve the generalization of supervised approaches. Further, the underlying models needed to generate these datasets need only accurately model certain high importance features.

More Details

Time- and Energy-Resolved Coupled Saturn Radiation Environments Simulations Using the Integrated Tiger Series (ITS) Code

Depriest, Kendall D.; Pointon, Timothy D.; Sirajuddin, David S.; Ulmen, Benjamin A.

Using a newly developed coupling of the ElectroMagnetic Plasma In Realistic Environments (EMPIRE) code with the Integrated Tiger Series (ITS) code, radiation environment calculations have been performed. The effort was completed as part of the Saturn Recapitalization (Recap) program that represents activities to upgrade and modernize the Saturn accelerator facility. The radiation environment calculations performed provide baseline results with current or planned hardware in the facility. As facility design changes are proposed and implemented as part of Saturn Recap, calculations of the radiation environment will be performed to understand how the changes impact the output of the Saturn accelerator.

More Details

Reviewing MACCS Capabilities for Assessing Tritium Releases to the Environment

Clavier, Kyle C.; Clayton, Daniel J.

Tritium has a unique physical and chemical behavior which causes it to be highly mobile in the environment. As it behaves similarly to hydrogen in the environment, it may also be readily incorporated into the water cycle and other biological processes. These factors and other environmental transformations may also cause the oxidation of an elemental tritium release, resulting in a multiple order of magnitude increase in dose coefficient and radiotoxicity. While source term development and understanding for advanced reactors are still underway, tritium may be a radionuclide of interest. It is thus important to understand how tritium moves through the environment and how the MACCS accident consequence code handles acute tritium releases in an accident scenario. Additionally, existing tritium models may have functionalities that could inform updates to MACCS to handle tritium. In this report tritium transport is reviewed and existing tritium models are summarized in view of potential updates to MACCS.

More Details

Finite Element Simulation of the Acoustic Pressure Inside a Beverage Container for Non-Thermal, Ultrasound-based Pasteurization

Branch, Darren W.

The purpose of this effort is to investigate whether large acoustic pressure waves can be transmitted inside beverage containers to enable pasteurization. Acoustic waves are known to induce large nonlinear compressive forces and shock waves in fluids, suggesting that compression waves may be capable of damaging bacteria inside beverage containers without appreciably increasingly the temperature or altering the freshness and flavor of the beverage contents. Although a combined process such as thermosonication (e.g., sonication with heating) is likely more efficient, it is instructive to compute the acoustic pressure field distribution inside the beverage container. The COMSOL simulations used two and three-dimensional models of beverage containers placed in a water bath to compute the acoustic pressure field. A limitation of these COMSOL models is that they cannot determine the bacterial lysis efficiency, rather the models provide an indirect metric of bacterial lysis based on the magnitude of the pressure field and its distribution.

More Details
Results 3826–3850 of 96,771
Results 3826–3850 of 96,771