Publications

Results 3851–3875 of 96,771

Search results

Jump to search filters

Low-synch Gram–Schmidt with delayed reorthogonalization for Krylov solvers

Parallel Computing

Bielich, Daniel; Langou, Julien; Thomas, Stephen; Swirydowicz, Kasia; Yamazaki, Ichitaro Y.; Boman, Erik G.

The parallel strong-scaling of iterative methods is often determined by the number of global reductions at each iteration. Low-synch Gram–Schmidt algorithms are applied here to the Arnoldi algorithm to reduce the number of global reductions and therefore to improve the parallel strong-scaling of iterative solvers for nonsymmetric matrices such as the GMRES and the Krylov–Schur iterative methods. In the Arnoldi context, the QR factorization is “left-looking” and processes one column at a time. Among the methods for generating an orthogonal basis for the Arnoldi algorithm, the classical Gram–Schmidt algorithm, with reorthogonalization (CGS2) requires three global reductions per iteration. A new variant of CGS2 that requires only one reduction per iteration is presented and applied to the Arnoldi algorithm. Delayed CGS2 (DCGS2) employs the minimum number of global reductions per iteration (one) for a one-column at-a-time algorithm. The main idea behind the new algorithm is to group global reductions by rearranging the order of operations. DCGS2 must be carefully integrated into an Arnoldi expansion or a GMRES solver. Numerical stability experiments assess robustness for Krylov–Schur eigenvalue computations. Performance experiments on the ORNL Summit supercomputer then establish the superiority of DCGS2 over CGS2.

More Details

Physically rigorous reduced-order flow models of fractured subsurface environments without explosive computational cost

Beskardes, G.D.; Weiss, Chester J.; Darrh, Andrea N.; Kuhlman, Kristopher L.; Chang, Kyung W.

Fractured media models comprise discontinuities of multiple lengths (e.g. fracture lengths and apertures, wellbore area) that fall into the relatively insignificant length scales spanning millimeter-scale fractures to centimeter-scale wellbores in comparison to the extensions of the field of interest, and challenge the conventional discretization methods imposing highly-fine meshing and formidably large numerical cost. By utilizing the recent developments in the finite element analysis of electromagnetics that allow to represent material properties on a hierarchical geometry, this project develops computational capabilities to model fluid flow, heat conduction, transport and induced polarization in large-scale geologic environments that possess geometrically-complex fractures and man-made infrastructures without explosive computational cost. The computational efficiency and robustness of this multi-physics modeling tool are demonstrated by considering various highly-realistic complex geologic environments that are common in many energy and national security related engineering problems.

More Details

Efficient approach to kinetic simulation in the inner magnetically insulated transmission line on Z

Evstatiev, Evstati G.; Hess, Mark H.

This project explores the idea of performing kinetic numerical simulations in the Z inner magnetically insulated transmission line (inner MITL) by reduced physics models such as a guiding center drift kinetic approximation for particles and electrostatic and magnetostatic approximation for the fields. The basic problem explored herein is the generation, formation, and evolution of vortices by electron space charge limited (SCL) emission. The results indicate that for relevant to Z values of peak current and pulse length, these approximations are excellent, while also providing tens to hundreds of times reduction in the computational load. The benefits could be enormous: Implementation of these reduced physics models in present particle-in-cell (PIC) codes could enable them to be routinely used for experimental design while still capturing essential non-thermal (kinetic) physics.

More Details

The Power of Priors: Improved Enrichment Safeguards

Shoman, Nathan; Honnold, Philip H.

International safeguards currently rely on material accountancy to verify that declared nuclear material is present and unmodified. Although effective, material accountancy for large bulk facilities can be expensive to implement due to the high precision instrumentation required to meet regulatory targets. Process monitoring has long been considered to improve material accountancy. However, effective integration of process monitoring has been met with mixed results. Given the large successes in other domains, machine learning may present a solution for process monitoring integration. Past work has shown that unsupervised approaches struggle due to measurement error. Although not studied in depth for a safeguards context, supervised approaches often have poor generalization for unseen classes of data (e.g., unseen material loss patterns). This work shows that engineered datasets, when used for training, can improve the generalization of supervised approaches. Further, the underlying models needed to generate these datasets need only accurately model certain high importance features.

More Details

Multi-fidelity information fusion and resource allocation

Jakeman, John D.; Eldred, Michael S.; Geraci, Gianluca G.; Seidl, Daniel T.; Smith, Thomas M.; Gorodetsky, Alex A.; Pham, Trung; Narayan, Akil; Zeng, Xiaoshu; Ghanem, Roger

This project created and demonstrated a framework for the efficient and accurate prediction of complex systems with only a limited amount of highly trusted data. These next generation computational multi-fidelity tools fuse multiple information sources of varying cost and accuracy to reduce the computational and experimental resources needed for designing and assessing complex multi-physics/scale/component systems. These tools have already been used to substantially improve the computational efficiency of simulation aided modeling activities from assessing thermal battery performance to predicting material deformation. This report summarizes the work carried out during a two year LDRD project. Specifically we present our technical accomplishments; project outputs such as publications, presentations and professional leadership activities; and the project’s legacy.

More Details
Results 3851–3875 of 96,771
Results 3851–3875 of 96,771