Publications

Results 3001–3025 of 96,771

Search results

Jump to search filters

A general framework for substructuring-based domain decomposition methods for models having nonlocal interactions

Numerical Methods for Partial Differential Equations

D'Elia, Marta D.; Bochev, Pavel B.; Gunzburger, Max D.; Capodaglio, Giacomo; Klar, Manuel; Vollmann, Christian

A mathematical framework is provided for a substructuring-based domain decomposition (DD) approach for nonlocal problems that features interactions between points separated by a finite distance. Here, by substructuring it is meant that a traditional geometric configuration for local partial differential equation (PDE) problems is used in which a computational domain is subdivided into non-overlapping subdomains. In the nonlocal setting, this approach is substructuring-based in the sense that those subdomains interact with neighboring domains over interface regions having finite volume, in contrast to the local PDE setting in which interfaces are lower dimensional manifolds separating abutting subdomains. Key results include the equivalence between the global, single-domain nonlocal problem and its multi-domain reformulation, both at the continuous and discrete levels. These results provide the rigorous foundation necessary for the development of efficient solution strategies for nonlocal DD methods.

More Details

DUKE PRO STI TEST at 9965 - RANGE 1 (IMPACT NOISE). Survey Profile Report

Villarreal, Lorenzo R.

Members of the Workforce (MOW) who are exposed to noise levels above 140 dBC, regardless of hearing protection worn, are required to be enrolled into the SNL Hearing Conservation Program which includes audiometric testing, online training (HCP100) and wearing hearing protection. Based on the area impact noise sample results, the attenuation provided by the MFCP was protective for mitigating noise to levels below the ACGIH TLV of 140 dBC. The results also validated the scaled distance equation in an open-air environment as the results at K635 (864 feet) were below 140 dBC.

More Details

Processing and properties of PSZT 95/5 ceramics with varying Ti and Nb substitution

International Journal of Ceramic Engineering and Science

Neuman, Eric W.; Anselmo, Nicholas; Meyer, Amber; Grier, Sophie; DiAntonio, Christopher D.; Rodriguez, Mark A.; Torres, Rose M.; Brane, Brian K.; Griego, J.J.M.

Niobium doped lead-tin-zirconate-titanate ceramics near the PZT 95/5 orthorhombic AFE – rhombohedral FE morphotropic phase boundary Pb1-0.5y(Zr0.865-xTixSn0.135)1-yNbyO3 were prepared according to a 22+1 factorial design with x = 0.05, 0.07 and y = 0.0155, 0.0195. The ceramics were prepared by a traditional solid-state synthesis route and sintered to near full density at 1250°C for 6 h. All compositions were ∼98% dense with no detectable secondary phases by X-ray diffraction. The ceramics exhibited equiaxed grains with intergranular porosity, and grain size was ∼5 µm, decreasing with niobium substitution. Compositions exhibited remnant polarization values of ∼32 µC/cm2, increasing with Ti substitution. Depolarization by the hydrostatic pressure induced FE-AFE phase transition was drastically affected by variation of the Ti and Nb substitution, increasing at a rate of 113 MPa /1% Ti and 21 MPa/1% Nb. Total depolarization output was insensitive to the change in Ti and Nb substitution, ∼32.8 µC/cm2 for the PSZT ceramics. The R3c-R3m and R3m-Pm3m phase transition temperatures on heating ranged from 90 to 105°C and 183 to 191°C, respectively. Ti substitution stabilized the R3c and R3m phases to higher temperatures, while Nb substitution stabilized the Pm3m phase to lower temperatures. Thermal hysteresis of the phase transitions was also observed in the ceramics, with transition temperature on cooling being as much as 10°C lower.

More Details

Sensitivity analysis of generic deep geologic repository with focus on spatial heterogeneity induced by stochastic fracture network generation

Advances in Water Resources

Brooks, Dusty M.; Swiler, Laura P.; Stein, Emily S.; Mariner, Paul M.; Basurto, Eduardo B.; Portone, Teresa P.; Eckert, Aubrey C.; Leone, Rosemary C.

Geologic Disposal Safety Assessment Framework is a state-of-the-art simulation software toolkit for probabilistic post-closure performance assessment of systems for deep geologic disposal of nuclear waste developed by the United States Department of Energy. This paper presents a generic reference case and shows how it is being used to develop and demonstrate performance assessment methods within the Geologic Disposal Safety Assessment Framework that mitigate some of the challenges posed by high uncertainty and limited computational resources. Variance-based global sensitivity analysis is applied to assess the effects of spatial heterogeneity using graph-based summary measures for scalar and time-varying quantities of interest. Behavior of the system with respect to spatial heterogeneity is further investigated using ratios of water fluxes. This analysis shows that spatial heterogeneity is a dominant uncertainty in predictions of repository performance which can be identified in global sensitivity analysis using proxy variables derived from graph descriptions of discrete fracture networks. New quantities of interest defined using water fluxes proved useful for better understanding overall system behavior.

More Details

Internal 2-D Surface Temperature Measurements for Large Complex Geometries

Sjoberg, Carl M.

For 2D-temperature monitoring applications, a variant of EIT (Electrical Impedance Tomography) is evaluated computationally in this work. Literature examples of poor sensor performance in the center of the 2D domains away from the side electrodes motivated this study which seeks to overcome some of the previously noted shortcomings. In particular, the use of ‘sensing skins’ with novel tailored baseline conductivities were examined using the EIDORS package for EIT. It was found that the best approach for detecting a hot spot depends on several factors such as the current injection (stimulation) patterns, the measurement patterns, and the reconstruction algorithms. For a well-performing combination of these factors, tailored baseline conductivities were assessed and compared to the baseline uniform conductivity. It was discovered that for some EIT applications, a tailored distribution needs to be smooth and that sudden changes in the conductivity gradients should be avoided. Still, the benefits in terms of improved EIT performance were small for conditions for which the EIT measurements had been ‘optimized’ for the uniform baseline case. Within the limited scope of this study, only two specific cases showed benefits from tailored distributions. For one case, a smooth tailored distribution with increased baseline conductivity in the center provided a better separation of two centrally located hot spots. For another case, a smooth tailored distribution with reduced conductivity in the center provided better estimates of the magnitudes of two hot spots near the center of the sensing skin.

More Details

Mechanical, Microstructural, and Electrochemical Characterization of NaSICON Sodium Ion Conductors [Poster]

Hill, Ryan C.; Hempel, Jacob; Cheng, Yang-Tse; Spoerke, Erik D.; Small, Leo J.; Gross, Martha S.; Peretti, Amanda S.

The DOE Office of Electricity views sodium batteries as a priority in pursuing a safe, resilient, and reliable grid. Improvements in solid-state electrolytes are key to realizing the potential of these large-scale batteries. NaSICON structure consists of SiO4 or PO4 tetrahedra sharing common corners with ZrO6 octahedra. Structure forms “tunnels” in three dimensions that can transport interstitial sodium ion. 3D structure provides higher ionic conductivity than other conductors (β’’-alumina), particularly at low temperature. Lower temperature (cheaper) processing compared to β’’-alumina. Our objective was to identify fundamental structure-processing-property relationships in NaSICON solid electrolytes to inform design for use in sodium batteries. In this work, the mechanical properties of NaSICON sodium ion conductors are affected by sodium conduction. Electrochemical cycling can alter modulus and hardness in NaSICON. Excessive cycling can lead to secondary phases and/or dendrite formation that change mechanical properties in NaSICON. Mechanical and electrochemical properties can be correlated with topographical features to further inform design decisions

More Details

Excitonic Effects in X-ray Absorption Spectra of Fluoride Salts and Their Surfaces

Chemistry of Materials

Sanz-Matias, Ana; Roychoudhury, Subhayan; Feng, Xuefei; Yang, Feipeng; Cheng, Kao L.; Zavadil, Kevin R.; Guo, Jinghua; Prendergast, David

Given their natural abundance and thermodynamic stability, fluoride salts may appear as evolving components of electrochemical interfaces in Li-ion batteries and emergent multivalent ion cells. This is due to the practice of employing electrolytes with fluorine-containing species (salt, solvent, or additives) that electrochemically decompose and deposit on the electrodes. Operando X-ray absorption spectroscopy (XAS) can probe the electrode-electrolyte interface with a single-digit nanometer depth resolution and offers a wealth of insights into the evolution and Coulombic efficiency or degradation of prototype cells, provided that the spectra can be reliably interpreted in terms of local oxidation state, atomic coordination, and electronic structure about the excited atoms. To this end, we explore fluorine K-edge XAS of mono- (Li, Na, and K) and di-valent (Mg, Ca, and Zn) fluoride salts from a theoretical standpoint and discover a surprising level of detailed electronic structure information about these materials despite the relatively predictable oxidation state and ionicity of the fluoride anion and the metal cation. Utilizing a recently developed many-body approach based on the ΔSCF method, we calculate the XAS using density functional theory and experimental spectral profiles are well reproduced despite some experimental discrepancies in energy alignment within the literature, which we can correct for in our simulations. We outline a general methodology to explain shifts in the main XAS peak energies in terms of a simple exciton model and explain line-shape differences resulting from the mixing of core-excited states with metal d character (for K and Ca specifically). Given ultimate applications to evolving interfaces, some understanding of the role of surfaces and their terminations in defining new spectral features is provided to indicate the sensitivity of such measurements to changes in interfacial chemistry.

More Details

Teaching an Old Reagent New Tricks: Synthesis, Unusual Reactivity, and Solution Dynamics of Borohydride Grignard Compounds

Organometallics

Stavila, Vitalie S.; Reynolds, Joseph E.; Acosta, Austin C.; Kang, Shinyoung; Li, Sichi; Lipton, Andrew S.; Schneemann, Andreas; Leick, Noemi; Bhandarkar, Austin B.; Reed, Christopher; Horton, Robert D.; Gennett, Thomas; Wood, Brandon C.; Allendorf, Mark D.

Grignard reagents of the general formula RMgX (X = Cl-, Br-, I-) have been utilized in various chemistries for over 100 years. We report that replacing the halide in a Grignard reagent with a reactive borohydride anion adds a new synthetic dimension for these influential compounds. We synthesized the series RMgBH4 (R = Et, n-Bu, Ph, Bn) and characterized the reactivity toward both organic and inorganic molecules. Using butylmagnesium borohydride (BuMgBH4) as an exemplar, we demonstrate that these compounds possess unique reactivity due to the presence of reducing borohydride groups, resulting in tandem reactivity with organic amides/esters to generate secondary and primary alcohols. Molecular dynamics simulations indicate the stability of BuMgBH4 is comparable to that of Mg(BH4)2 + MgBu2, validating the Schlenk equilibrium in borohydride Grignard compounds. Metadynamics simulations confirm that the equilibrium is kinetically accessible through solvent-mediated processes. BuMgBH4 also reacts with CO2 and NH3, revealing potential uses for CO2 utilization and as a mixed-anion metal borohydride/amide precursor.

More Details

Conflicting Information and Compliance With COVID-19 Behavioral Recommendations

Naugle, Asmeret B.; Rothganger, Fredrick R.; Verzi, Stephen J.; Doyle, Casey L.

The prevalence of COVID-19 is shaped by behavioral responses to recommendations and warnings. Available information on the disease determines the population’s perception of danger and thus its behavior; this information changes dynamically, and different sources may report conflicting information. We study the feedback between disease, information, and stay-at-home behavior using a hybrid agent-based-system dynamics model that incorporates evolving trust in sources of information. We use this model to investigate how divergent reporting and conflicting information can alter the trajectory of a public health crisis. The model shows that divergent reporting not only alters disease prevalence over time, but also increases polarization of the population’s behaviors and trust in different sources of information.

More Details

Modifying Ionogel Solid-Electrolytes for Complex Electrochemical Systems

ACS Applied Energy Materials

Ashby, David S.; Cardenas, Jorge A.; Bhandarkar, Austin B.; Cook, Adam W.; Talin, A.A.

The solution processability of ionogel solid electrolytes has recently garnered attention in the Li-ion battery community as a means to address the interface and fabrication issues commonly associated with most solid electrolytes. However, the trapped ionic liquid (ILE) component has hindered the electrochemical performance. Herein, we present a process to tune the properties by replacing the ILE in a silica-based ionogel after fabrication with a liquid component befitting the desired application. Electrochemical cycling under various conditions showcases gels containing different liquid components incorporated into LiFePO4 (LFP)/gel/Li cells: high power (455 W kg-1 at a 1 C discharge) systems using carbonates, low temperatures (-40 °C) using ethers, or high temperatures (100 °C) using ionic liquids. Fabrication of additive-manufactured cells utilizing the exchanged carbonate-based system is demonstrated in a planar LFP/Li4Ti5O12 (LTO) system, where a marked improvement over an ionogel is found in terms of rate capability, capacity, and cycle stability (118 vs 41 mA h g-1 at C/4). This process represents a promising route to create a separator-less cell, potentially in complex architectures, where the electrolyte properties can be facilely tuned to meet the required conditions for a wide range of battery chemistries while maintaining a uniform electrolyte access throughout cast electrodes.

More Details

Role of Coatings as Artificial Solid Electrolyte Interphases on Lithium Metal Self-Discharge

Journal of Physical Chemistry C

Merrill, Laura C.; Long, Daniel M.; Small, Kathryn A.; Jungjohann, Katherine L.; Leung, Kevin L.; Bassett, Kimberly L.; Harrison, Katharine L.

Artificial solid electrolyte interphases have provided a path to improved cycle life for high energy density, next-generation anodes like lithium metal. Although long cycle life is necessary for widespread implementation, understanding and mitigating the effects of aging and self-discharge are also required. Here, we investigate several coating materials and their role in calendar life aging of lithium. We find that the oxide coatings are electronically passivating whereas the LiF coating slows charge transfer kinetics. Furthermore, the Coulombic loss during self-discharge measurements improves with the oxide layers and worsens with the LiF layer. It is found that none of the coatings create a continuous conformal, electronically passivating layer on top of the deposited lithium nor are they likely to distribute evenly through a porous deposit, suggesting that none of the materials are acting as an artificial solid electrolyte interphase. Instead, they likely alter performance through modulating lithium nucleation and growth.

More Details
Results 3001–3025 of 96,771
Results 3001–3025 of 96,771