Multiphysics and analytical calculations were conducted for a heat exchanger with passive, natural circulation flow. A glycol/water working fluid convects the heat to a dimpled heat exchanger shell, which subsequently transfers the heat to the soil, which acts as the ultimate heat sink. Because the system is fully-passive, it is not subject to the expenses, maintenance, and mechanical breakdowns associated with moving parts. Density, heat capacity, and thermal conductivity material properties were measured for various soil samples, and subsequently included as input for the soil heat conduction model. The soil model was coupled to a computational fluid dynamics (CFD) heat exchanger model that included the dynamic Smagorinsky large eddy simulation and k- omega turbulence models. The analysis showed that the fluid dynamics and heat transfer models worked properly, albeit at a slow pace. Nevertheless, the coupled CFD/heat conduction simulation ran long enough to determine a key parameter—the amount of heat conducted from the heat exchanger to the ground. This unique performance value, along with experimental data, was used as input for stand-alone, fast-running CFD models, as well as boundaries to obtain solutions to partial differential equations for soil heat conduction.
Understanding the selectivity of metal–organic frameworks (MOFs) to complex acid gas streams will enable their use in industrial applications. Herein, ab initio molecular dynamic simulations (AIMD) were used to simulate ternary gas mixtures (H2O-NO2-SO2) in rare earth 2,5-dihydroxyterephthalic acid (RE-DOBDC) MOFs. Stronger H2O gas-metal binding arose from thermal vibrations in the MOF sterically hindering access of SO2 and NO2 molecules to the metal sites. Gas-gas and gas-linker interactions within the MOF framework resulted in the formation of multiple secondary gas species including HONO, HNO2, NOSO, and HNO3−. Four gas adsorption sites were identified along with a new de-protonation reaction mechanism not observable through experiment. This study not only provides valuable information on competitive gas binding energies in the MOF, it also provides important chemical insights into transient chemical reactions and mechanisms.
Laser-induced photoemission of electrons offers opportunities to trigger and control plasmas and discharges. However, the underlying mechanisms are not sufficiently characterized to be fully utilized. Photoemission is highly nonlinear, achieved through multiphoton absorption, above threshold ionization, photo-assisted tunneling, etc., where the dominant process depends on the work function of the material, photon energy and associated fields, surface heating, background fields, etc. To characterize the effects of photoemission on breakdown, breakdown experiments were performed and interpreted using a 0D plasma discharge circuit model and quantum model of photoemission.
Cryogenic plasma focused ion beam (PFIB) electron microscopy analysis is applied to visualizing ex situ (surface industrial) and in situ (subsurface geologic) carbonation products, to advance understanding of carbonation kinetics. Ex situ carbonation is investigated using NIST fly ash standard #2689 exposed to aqueous sodium bicarbonate solutions for brief periods of time. In situ carbonation pathways are investigated using volcanic flood basalt samples from Schaef et al. (2010) exposed to aqueous CO2 solutions by them. The fly ash reaction products at room temperature show small amounts of incipient carbonation, with calcite apparently forming via surface nucleation. Reaction products at 75° C show beginning stages of an iron carbonate phase, e.g., siderite or ankerite, common phases in subsurface carbon sequestration environments. This may suggest an alternative to calcite in carbonation low calcium-bearing fly ashes. Flood basalt carbonation reactions show distinct zonation with high calcium and calcium-magnesium bearing zones alternating with high iron-bearing zones. The calcium-magnesium zones are notable with occurrence of localized pore space. Oscillatory zoning in carbonate minerals is distinctly associated with far-from-equilibrium conditions where local chemical environments fluctuate via a coupling of reaction with transport. The high porosity zones may reflect a precursor phase (e.g., aragonite) with higher molar volume that then “ripens” to the high-Mg calcite phase-plus-porosity. These observations reveal that carbonation can proceed with evolving local chemical environments, formation and disappearance of metastable phases, and evolving reactive surface areas. Together this work shows that future application of cryo-PFIB in carbonation studies would provide advanced understanding of kinetic mechanisms for optimizing industrial-scale and commercial-scale applications.
AbstractMonitoring of cooling tower performance in a nuclear reactor facility is necessary to ensure safe operation; however, instrumentation for measuring performance characteristics can be difficult to install and may malfunction or break down over long duration experiments. This paper describes employing a thermodynamic approach to quantify cooling tower performance, the Merkel model, which requires only five parameters, namely, inlet water temperature, outlet water temperature, liquid mass flowrate, gas mass flowrate, and wet bulb temperature. Using this model, a general method to determine cooling tower operation for a nuclear reactor was developed in situations when neither the outlet water temperature nor gas mass flowrate are available, the former being a critical piece of information to bound the Merkel integral. Furthermore, when multiple cooling tower cells are used in parallel (as would be in the case of large-scale cooling operations), only the average outlet temperature of the cooling system is used as feedback for fan speed control, increasing the difficulty of obtaining the outlet water temperature for each cell. To address these shortcomings, this paper describes a method to obtain individual cell outlet water temperatures for mechanical forced-air cooling towers via parametric analysis and optimization. In this method, the outlet water temperature for an individual cooling tower cell is acquired as a function of the liquid-to-gas ratio (L/G). Leveraging the tight tolerance on the average outlet water temperature, an error function is generated to describe the deviation of the parameterized L/G to the highly controlled average outlet temperature. The method was able to determine the gas flowrate at rated conditions to be within 3.9% from that obtained from the manufacturer’s specification, while the average error for the four individual cooling cell outlet water temperatures were 1.6 °C, −0.5 °C, −1.0 °C, and 0.3 °C.
Reliable climate predictions are important for making robust decisions in response to the changing climate. This project aims to reduce mis-modeling uncertainties arising from the representation of the land-atmosphere coupling in the Energy Exascale Earth System Model (E3SM) by using a machine learning approach. This approach will use an encoder-decoder architecture to represent the information that is developed in the land model and given to the atmosphere model. The simulated data will be taken from the E3SM simulation. However, the incorporation of observed data into the simulated dataset reduces mis-modeling uncertainties.
This memo serves as an initial deficiency study of current foam modeling approaches, to determine where model changes and/or improvements can be made to capture the phenomena of receding foam. We are looking for feedback on our approach and suggestions from interested internal customers.
Lithium-ion batteries (LIBs) have revolutionized our society in many respects, and we are expecting even more favorable changes in our lifestyles with newer battery technologies. In pursuing such eligible batteries, nanophase materials play some important roles in LIBs and beyond technologies. Stimulated by their beneficial effects of nanophase materials, we initiated this Focus. Excitingly, this Focus collects 13 excellent original research and review articles related to the applications of nanophase materials in various rechargeable batteries, ranging from nanostructured electrode materials, nanoscale interface tailoring, novel separators, computational calculations, and advanced characterizations.
The New Mexico Small Business Assistance Program (NMSBA) has once again paired with Optical Radio Communications Technology (ORC Tech). A New Mexico startup Limited Liability Company (LLC), with Sandia National Laboratories (SNL) Engineers at the Sensors and Textiles Innovatively Tailored for Complex, High-Efficiency Detection (STITCHED) laboratory, to aid in the development of an ultra-passive, portable, deployable wireless signal booster technology.
The International Atomic Energy Agency (IAEA) applies safeguards to nuclear facilities that are not operating, including those undergoing decommissioning, and the IAEA’s effort in this area is both considerable and increasing. Specifically, the IAEA Department of Safeguards’ Division of Concepts and Planning (SGCP-003: Safeguards Approaches) identified an R&D need to “Develop safeguards implementation guidelines for facilities under decommissioning and safeguards concepts for post-accident facilities under decommissioning”. Nuclear facilities undergoing decommissioning are not exempt from safeguards agreements between the IAEA and Host State, and, accordingly, the requirement for verification of no diversion of nuclear material and detection of undeclared activities at decommissioned facilities remain even after facility shutdown. However, the effort required to meet safeguards objectives diminishes as nuclear material and essential equipment are removed during the decommissioning process which shifts the emphasis from verification of ever-diminishing fissile or source material inventories to verification of changes in facility design and equipment operability.
This project matured a new understanding (a “modern synthesis”) of the structure and evolution of science and technology. It created an understanding and framework for how Sandia National Labs, the Department of Energy, and the nation, might improve their research productivity, with significant ramifications on national security and economic competitiveness.
This report documents our experience constructing a numerical method for the collisional Boltzmann equation that is capable of accurately capturing the collisionless through strongly collisional limits. We explore three different functional representations and present a detailed account of a numerical method based on a spatially dependent Gaussian mixture model (GMM). The Kullback-Leibler divergence is used as a closeness measure and various expectation maximization (EM) solution algorithms are implemented to find a compact representation in velocity space for distribution functions that exhibit significant non-Maxwellian character. We discuss issues that appear with this representation over a range of Knudsen numbers for a prototypical test problem and demonstrate that the strongly collisional limit recovers a solution to Euler's equations. Looking forward, this approach is broadly applicable to the non-relativistic and relativistic collisional Vlasov equations.