Plastic scintillators are widely used as radiation detection media in homeland security and nuclear physics applications. Their attributes include low cost, scalability to large detector volumes, and additive compounding to enable additional material and detection features, such as pulse shape discrimination (PSD), gamma-ray spectroscopy, aging resistance, and coincidence timing. However, traditional chemically cured plastic scintillators (CCS) require long reaction times, and hazardous wet chemical procedures performed by specially trained personnel, and can leave residual monomer, resulting in deleterious optical and material properties. Here, we synthesize melt blended scintillators (MBSs) in 2.5 days using easily accessible solid-state compounding of commercially-available poly(styrene) with 30-60 wt% fluorene-based compound 'P2' to create monolithic detectors with < 100 ppm residual monomer, in several form factors. The best scintillation performance was recorded for 60 wt% P2 in Styron 665, including gamma-ray light yield 139% of EJ- 200 commercial scintillator and PSD figure of merit (FOM) value of 2.65 at 478 keVee, approaching P2 organic glass scintillator (OGS). The capability of MBS to generate fog-resistant scintillators and poly(methyl methacrylate) (PMMA)-based scintillators for use in challenging environments is also demonstrated.
We develop an adaptive method for quantum state preparation that utilizes randomness as an essential component and that does not require classical optimization. Instead, a cost function is minimized to prepare a desired quantum state through an adaptively constructed quantum circuit, where each adaptive step is informed by feedback from gradient measurements in which the associated tangent space directions are randomized. We provide theoretical arguments and numerical evidence that convergence to the target state can be achieved for almost all initial states. We investigate different randomization procedures and develop lower bounds on the expected cost function change, which allows for drawing connections to barren plateaus and for assessing the applicability of the algorithm to large-scale problems.
High-altitude balloons carrying infrasound sensor payloads can be leveraged toward monitoring efforts to provide some advantages over other sensing modalities. On 10 July 2020, three sets of controlled surface explosions generated infrasound waves detected by a high-altitude floating sensor. One of the signal arrivals, detected when the balloon was in the acoustic shadow zone, could not be predicted via propagation modeling using a model atmosphere. Considering that the balloon’s horizontal motion showed direct evidence of gravity waves, we examined their role in infrasound propagation. Implementation of gravity wave perturbations to the wind field explained the signal detection and aided in correctly predicting infrasound travel times. Our results show that the impact of gravity waves is negligible below 20 km altitude; however, their effect is important above that height. The results presented here demonstrate the utility of balloon-borne acoustic sensing toward constraining the source region of variability, as well as the relevance of complexities surrounding infrasound wave propagation at short ranges for elevated sensing platforms.