Publications

Results 2876–2900 of 99,299

Search results

Jump to search filters

Use of Sobol’ Variance-Based Global Sensitivity Analysis and Multidimensional Legendre Polynomial Fitting for Reduced Order Modeling

Holbert, Keith E.; Heger, Arlen S.

Sandia National Laboratories (SNL) has developed a novel reduced order modeling approach. Prioritization of inputs is accomplished using Sobo' indices obtained through a more efficient variance-based global sensitivity analysis. To determine the Sobo' functions, simulated input values are aligned to collocation points to permit the use of Gauss-Lobatto integration, thereby reducing the number of simulation trials needed by more than an order of magnitude compared to standard Monte Carlo approaches. Furthermore, by leveraging the orthogonality of Legendre polynomials in conjunction with those same simulations at the collocation nodes, an efficient fitting method is developed to represent the Sobo' functions from which a reduced order model (ROM) is constructed. The developed method is both more efficient computationally, and the resulting ROM is more accurate. The efficacy of this technique is demonstrated on a nonlinear polynomial test function as well as the nonlinear Ishigami and Sobo' g functions.

More Details

PACT Perovskite PV Module Outdoor Test Protocol (Version 0.1)

King, Bruce H.; Stein, Joshua; Schelhas, Laura; Silverman, Timothy

The purpose of this protocol is to define procedures and practices to be used by the PACT center for field testing of metal halide perovskite (MHP) photovoltaic (PV) modules. The protocol defines the physical, electrical, and analytical configuration of the tests and applies equally to mounting systems at a fixed orientation or sun tracking systems. While standards exist for outdoor testing of conventional PV modules, these do not anticipate the unique electrical behavior of perovskite cells. Further, the existing standards are oriented toward mature, relatively stable products with lifetimes that can be measured on the scale of years to decades. The state of the art for MHP modules is still immature with considerable sample to sample variation among nominally identical modules. Version 0.0 of this protocol does not define a minimum test duration, although the intent is for modules to be fielded for periods ranging for weeks to months. This protocol draws from relevant parts of existing standards, and where necessary includes modifications specific to the behavior of perovskites.

More Details

Defender Policy Evaluation and Resource Allocation With MITRE ATT&CK Evaluations Data

IEEE Transactions on Dependable and Secure Computing

Outkin, Alexander V.; Schulz, Patricia V.; Schulz, Timothy; Tarman, Thomas D.; Pinar, Ali P.

Protecting against multi-step attacks of uncertain start times and duration forces the defenders into indefinite, always ongoing, resource-intensive response. To allocate resources effectively, the defender must analyze and respond to an uncertain stream of potentially undetected multiple multi-step attacks and take measures of attack and response intensity over time into account. Such response requires estimation of overall attack success metrics and evaluating effect of defender strategies and actions associated with specific attack steps on overall attack metrics. We present a novel game-theoretic approach GPLADD to attack metrics estimation and demonstrate it on attack data derived from MITRE's ATT&CK Framework and other sources. In GPLADD, the time to complete attack steps is explicit; the attack dynamics emerges from attack graph and attacker-defender capabilities and strategies and therefore reflects 'physics' of attacks. The time the attacker takes to complete an attack step is drawn from a probability distribution determined by attacker and defender strategies and capabilities. This makes time a physical constraint on attack success parameters and enables comparing different defender resource allocation strategies across different attacks. We solve for attack success metrics by approximating attacker-defender games as discrete-time Markov chains and show evaluation of return on detection investments associated with different attack steps. We apply GPLADD to MITRE's APT3 data from ATT&CK Framework and show that there are substantial and un-intuitive differences in estimated real-world vendor performance against a simplified APT3 attack. We focus on metrics that reflect attack difficulty versus attacker ability to remain hidden in the system after gaining control. This enables practical defender optimization and resource allocation against multi-step attacks.

More Details

Estimating annual energy production from short tidal current records

Renewable Energy

Xu, Tongtong; Haas, Kevin A.; Gunawan, Budi

Deploying Tidal Energy Converters for electricity generation requires prior-knowledge of the potential Annual Energy Production (AEP) at the site, Ideally using a year-long tidal current record at the proposed site to minimize uncertainty. However, such records are often unavailable. Fortunately, using the periodic nature of tidal variability, the International Electrotechnical Commission Technical Specification for tidal energy resource assessment requires AEP calculation using at least 90 days of tidal current records at each turbine location. The sensitivity of AEP to different record durations has not been fully assessed. This is the goal of our study. The study utilized the U.S. tidal energy geodatabase to simulate tidal currents with various lengths, during 100 years of the 21st century. We then consider two frameworks for evaluating AEP: (a) The long-term (months) fixed instrument (FI) measurement at each proposed tidal turbine location, and (b) one FI measurement and short-term (hours) boat-based moving vessel measurements. Under the two scenarios, we examine the AEP assessed from short tidal current records, including how the AEP uncertainties vary spatially and temporally, and how they are associated with various astronomical factors. This helps provide guidance on choosing the appropriate assessment methodologies to reduce the AEP uncertainties and project cost.

More Details

Design and Characterization of a Lens-Coupled System for Dynamic X-Ray Diffraction

Smith, Anthony S.; Ao, Tommy

X-ray diffraction (XRD) is a necessary technique for understanding states of materials under static and dynamic loading conditions. The higher-pressure Equation of State (EOS) of many materials can only be explored via shock or ramp compression at temperatures and pressures of interest. While static XRD work has yielded EOS measurements in the 100 - 200 GPa regime, dynamic X-ray diffraction (DXRD) can explore EOS phases in the TPa regime, which closely resembles inner-core planetary conditions. DXRD hinges on the ability to measure the exact phase or phase change of a material while under dynamic loading conditions. Macroscopic diagnostic systems (e.g. velocimetry and pyrometry) can infer a phase change but not identify the specific phase entered by a material. While microscopic (atomic-level) diagnostic systems (e.g. DXRD) have been designed and implemented in Department of Energy’s (DOE) National Laboratories complex, the unique nature of Sandia National Laboratories’ Pulsed Power Facility (Z Machine) prohibits the use of such devices. The destructive nature of Z experiments presents a challenge to data capture and retrieval. Furthermore there are electromagnetic interference, X-ray background, and mechanical constraints to consider. Thus, a multi-part X-ray diagnostic for use on the Z Machine and Z-Beamlet Laser system has been designed and analyzed. Portions of this new DYnamic SCintillator Optic (DYSCO) have been built, tested and fielded. A data analysis software has been written. Finally, the radiance profile of the DYSCO’s scintillator has been characterized through experiments performed at the University of Arizona.

More Details
Results 2876–2900 of 99,299
Results 2876–2900 of 99,299