Publications

Results 51–75 of 85

Search results

Jump to search filters

Loop-to-loop coupling

Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Salazar, Robert S.; Coleman, Phillip D.; Lucero, Larry M.

This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

More Details

A Summary of the Theory and Design Team Efforts for the Sandia Metamaterials Science and Technology Grand Challenge LDRD

Basilio, Lorena I.; Brener, Igal B.; Burckel, David B.; Shaner, Eric A.; Wendt, J.R.; Luk, Ting S.; Ellis, A.R.; Bender, Daniel A.; Clem, Paul G.; Rasberry, Roger D.; Langston, William L.; Ihlefeld, Jon I.; Dirk, Shawn M.; Warne, Larry K.; Peters, D.W.; El-Kady, I.; Reinke, Charles M.; Loui, Hung L.; Williams, Jeffery T.; Sinclair, Michael B.; McCormick, Frederick B.

Abstract not provided.

A negative-index metamaterial design based on metal-core, dielectric shell resonators

IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)

Basilio, L.I.; Warne, Larry K.; Langston, William L.; Johnson, William Arthur.; Sinclair, M.B.

In this paper a simple effective-media analysis (including higher-order multipoles) is used to design a single-resonator, negative-index design based on a metal-core, dielectric-shell (MCDS) unit cell. In addition to comparing the performance of the MCDS design to other core-shell negative-index designs, performance trade-offs resulting from the relative positioning of the electric and magnetic modal resonances in the MCDS design are also discussed. © 2011 IEEE.

More Details

Modeling of general 1-D periodic leaky-wave antennas in layered media using EIGER™

Proceedings - 2010 12th International Conference on Electromagnetics in Advanced Applications, ICEAA'10

Johnson, W.A.; Paulotto, S.; Jackson, D.R.; Wilton, D.R.; Langston, William L.; Basilio, Lorena I.; Baccarelli, P.; Valerio, G.; Celepcikay, F.T.

This paper presents a mixed-potential integral-equation formulation for analyzing 1-D periodic leaky-wave antennas in layered media. The structures are periodic in one dimension and finite in the other two dimensions. The unit cell consists of an arbitrary-shaped metallic/dielectric structure. The formulation has been implemented in the EIGER™ code in order to obtain the real and complex propagation wavenumbers of the bound and leaky modes of such structures. Validation results presented here include a 1-D periodic planar leaky-wave antenna and a fully 3-D waveguide test case. ©2010 IEEE.

More Details

Modeling of general 1-D periodic leaky-wave antennas in layered media using EIGER

Langston, William L.; Basilio, Lorena I.

This paper presents a mixed-potential integral-equation formulation for analyzing 1-D periodic leaky-wave antennas in layered media. The structures are periodic in one dimension and finite in the other two dimensions. The unit cell consists of an arbitrary-shaped metallic/dielectric structure. The formulation has been implemented in the EIGER{trademark} code in order to obtain the real and complex propagation wavenumbers of the bound and leaky modes of such structures. Validation results presented here include a 1-D periodic planar leaky-wave antenna and a fully 3-D waveguide test case.

More Details

An effective media toolset for use in metamaterial design

Warne, Larry K.; Johnson, William Arthur.; Langston, William L.; Sinclair, Michael B.

This paper introduces an effective-media toolset that can be used for the design of metamaterial structures based on metallic components such as split-ring resonators and dipoles, as well as dielectric spherical resonators. For demonstration purposes the toolset will be used to generate infrared metamaterial designs, and the predicted performances will be verified with full-wave numerical simulations.

More Details

Resonant coupling to a dipole absorber inside a metamaterial: Anticrossing of the negative index response

Journal of Vacuum Science and Technology B

Smolev, Svyatoslav; Ku, Zahyun; Brueck, S.R.J.; Brener, Igal B.; Sinclair, Michael B.; Ten Eyck, Gregory A.; Langston, William L.; Basilio, Lorena I.

The authors experimentally demonstrate a resonant hybridization between the magnetic dipole structural resonance in the permeability of a fishnet metamaterial and an electric dipole material resonance in the permittivity of the dielectric spacer layer. The hybrid resonances in the permeability and the negative index response exhibit an anticrossing behavior. A simple analytic model and numerical simulations using a rigorous coupled-wave analysis are in excellent qualitative agreement with the experiment. © 2010 American Vacuum Society.

More Details
Results 51–75 of 85
Results 51–75 of 85