Publications

Results 1–25 of 151

Search results

Jump to search filters

Developing and applying quantifiable metrics for diagnostic and experiment design on Z

Laros, James H.; Knapp, Patrick F.; Beckwith, Kristian B.; Evstatiev, Evstati G.; Fein, Jeffrey R.; Jennings, Christopher A.; Joseph, Roshan; Klein, Brandon T.; Maupin, Kathryn A.; Nagayama, Taisuke N.; Patel, Ravi G.; Schaeuble, Marc-Andre S.; Vasey, Gina; Ampleford, David A.

This project applies methods in Bayesian inference and modern statistical methods to quantify the value of new experimental data, in the form of new or modified diagnostic configurations and/or experiment designs. We demonstrate experiment design methods that can be used to identify the highest priority diagnostic improvements or experimental data to obtain in order to reduce uncertainties on critical inferred experimental quantities and select the best course of action to distinguish between competing physical models. Bayesian statistics and information theory provide the foundation for developing the necessary metrics, using two high impact experimental platforms on Z as exemplars to develop and illustrate the technique. We emphasize that the general methodology is extensible to new diagnostics (provided synthetic models are available), as well as additional platforms. We also discuss initial scoping of additional applications that began development in the last year of this LDRD.

More Details

Improving Predictive Capability in REHEDS Simulations with Fast, Accurate, and Consistent Non-Equilibrium Material Properties

Hansen, Stephanie B.; Baczewski, Andrew D.; Gomez, T.A.; Hentschel, T.W.; Jennings, Christopher A.; Kononov, Alina K.; Nagayama, Taisuke N.; Adler, Kelsey A.; Cangi, A.; Cochrane, Kyle C.; Laros, James H.; Schleife, A.

Predictive design of REHEDS experiments with radiation-hydrodynamic simulations requires knowledge of material properties (e.g. equations of state (EOS), transport coefficients, and radiation physics). Interpreting experimental results requires accurate models of diagnostic observables (e.g. detailed emission, absorption, and scattering spectra). In conditions of Local Thermodynamic Equilibrium (LTE), these material properties and observables can be pre-computed with relatively high accuracy and subsequently tabulated on simple temperature-density grids for fast look-up by simulations. When radiation and electron temperatures fall out of equilibrium, however, non-LTE effects can profoundly change material properties and diagnostic signatures. Accurately and efficiently incorporating these non-LTE effects has been a longstanding challenge for simulations. At present, most simulations include non-LTE effects by invoking highly simplified inline models. These inline non-LTE models are both much slower than table look-up and significantly less accurate than the detailed models used to populate LTE tables and diagnose experimental data through post-processing or inversion. Because inline non-LTE models are slow, designers avoid them whenever possible, which leads to known inaccuracies from using tabular LTE. Because inline models are simple, they are inconsistent with tabular data from detailed models, leading to ill-known inaccuracies, and they cannot generate detailed synthetic diagnostics suitable for direct comparisons with experimental data. This project addresses the challenge of generating and utilizing efficient, accurate, and consistent non-equilibrium material data along three complementary but relatively independent research lines. First, we have developed a relatively fast and accurate non-LTE average-atom model based on density functional theory (DFT) that provides a complete set of EOS, transport, and radiative data, and have rigorously tested it against more sophisticated first-principles multi-atom DFT models, including time-dependent DFT. Next, we have developed a tabular scheme and interpolation methods that compactly capture non-LTE effects for use in simulations and have implemented these tables in the GORGON magneto-hydrodynamic (MHD) code. Finally, we have developed post-processing tools that use detailed tabulated non-LTE data to directly predict experimental observables from simulation output.

More Details

Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation

Physics of Plasmas

Knapp, Patrick K.; Glinsky, Michael E.; Schaeuble, Marc-Andre S.; Jennings, Christopher A.; Evans, Matthew; Gunning, James; Awe, Thomas J.; Chandler, Gordon A.; Geissel, Matthias G.; Gomez, Matthew R.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Humane, Shailja; Klein, Brandon T.; Mangan, Michael M.; Nagayama, Taisuke N.; Porwitzky, Andrew J.; Ruiz, Daniel E.; Schmit, Paul F.; Slutz, Stephen A.; Smith, Ian C.; Weis, Matthew R.; Yager-Elorriaga, David A.; Ampleford, David A.; Beckwith, Kristian B.; Mattsson, Thomas M.; Peterson, Kyle J.; Sinars, Daniel S.

We present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.

More Details

Introduction to spectral line shape theory

Journal of Physics B: Atomic, Molecular and Optical Physics

Gomez, T.A.; Nagayama, Taisuke N.; Cho, Patricia B.; Kilcrease, D.P.; Fontes, C.J.; Zammit, M.C.

Spectral line-shape models are an important part of understanding high-energy-density (HED) plasmas. Models are needed for calculating opacity of materials and can serve as diagnostics for astrophysical and laboratory plasmas. However, much of the literature on line shapes is directed toward specialists. This perspective makes it difficult for non-specialists to enter the field. We have two broad goals with this topical review. First, we aim to give information so that others in HED physics may better understand the current field. This first goal may help guide future experiments to test different aspects of the theory. Second, we provide an introduction for those who might be interested in line-shape theory, and enough materials to be able to navigate the field and the literature. We give a high-level overview of line broadening process, as well as dive into the formalism, available methods, and approximations.

More Details

All-Order Full-Coulomb Quantum Spectral Line-Shape Calculations

Physical Review Letters

Gomez, T.A.; Nagayama, Taisuke N.; Cho, Patricia B.; Zammit, M.C.; Fontes, C.J.; Kilcrease, D.P.; Bray, I.; Hubeny, I.; Dunlap, B.H.; Laros, James H.; Winget, D.E.

Understanding how atoms interact with hot dense matter is essential for astrophysical and laboratory plasmas. Interactions in high-density plasmas broaden spectral lines, providing a rare window into interactions that govern, for example, radiation transport in stars. However, up to now, spectral line-shape theories employed at least one of three common approximations: second-order Taylor treatment of broadening operator, dipole-only interactions between atom and plasma, and classical treatment of perturbing electrons. In this Letter, we remove all three approximations simultaneously for the first time and test the importance for two applications: neutral hydrogen and highly ionized magnesium and oxygen. We found 15%-50% change in the spectral line widths, which are sufficient to impact applications including white-dwarf mass determination, stellar-opacity research, and laboratory plasma diagnostics.

More Details
Results 1–25 of 151
Results 1–25 of 151