Partial penetration laser welds join metal surfaces without additional filler material, providing hermetic seals for a variety of components. The crack-like geometry of a partial penetration weld is a local stress riser that may lead to failure of the component in the weld. Computational modeling of laser welds has shown that the model should include damage evolution to predict the large deformation and failure. We have performed interrupted tensile experiments both to characterize the damage evolution and failure in laser welds and to aid computational modeling of these welds. Several EDM-notched and laser-welded 304L stainless steel tensile coupons were pulled in tension, each one to a different load level, and then sectioned and imaged to show the evolution of damage in the laser weld and in the EDM-notched parent 304L material (having a similar geometry to the partial penetration laser-welded material). SEM imaging of these specimens revealed considerable cracking at the root of the laser welds and some visible micro-cracking in the root of the EDM notch even before peak load was achieved in these specimens. The images also showed deformation-induced damage in the root of the notch and laser weld prior to the appearance of the main crack, though the laser-welded specimens tended to have more extensive damage than the notched material. These experiments show that the local geometry alone is not the cause of the damage, but also microstructure of the laser weld, which requires additional investigation.
This memo addresses the calibration of anisotropic yield functions based on data obtained from a series of uniaxial tension specimens extracted from a tubular Al 7079 circular cylindrical extrusion. Achieving the calibrations completed an important step in the Experimentally Enhanced Computations (ExEC) project. The focus of the project is on novel calibration approaches that will be based on advanced diagnostics and numerical simulations with the intention of reducing the overall calibration effort. The test data used here resulted from traditional tensile tests on specimens cut at 12 orientations within the extrusion. Two anisotropic yield surfaces — Hill’s (1948) and Barlat’s (2005) — were calibrated based on the test data. The methods used to conduct the calibrations are described, and the results show that the material exhibited significant yield anisotropy. The larger number of parameters in Barlat’s yield function allowed it to fit the test data more accurately than Hill’s. Although work remains to assess the sensitivity of the calibrated model parameters to various factors, the methods implemented and the results obtained here provide bases for further work and useful benchmarks for future calibrations to be conducted using the novel approach.
A “good” speckle pattern enables DIC to make its full-field measurements, but oftentimes this artistic part of the DIC setup takes a considerable amount of time to develop and evaluate for a given optical configuration. A catalog of well-quantified speckle patterns for various fields of view would greatly decrease the time it would take to start making DIC measurements. The purpose of this speckle patterning study is to evaluate various speckling techniques we had readily available in our laboratories for fields of view from around 100 mm down to 5 mm that are common for laboratory-scale experiments. The list of speckling techniques is not exhaustive: spray painting, UV-printing of computer-designed speckle patterns, airbrushing, and particle dispersion. First, we quantified the resolution of our optical configurations for each of the fields of view to determine the smallest speckle we could resolve. Second, we imaged several speckle patterns at each field of view. Third, we quantified the average and standard deviation of the speckle size, speckle contrast, and density to characterize the quality of the speckle pattern. Finally, we performed computer-aided sub-pixel translation of the speckle patterns and ran correlations to examine how well DIC tracked the pattern translations. We discuss our metrics for a “good” speckle pattern and outline how others may perform similar studies for their desired optical configurations.
In this study, ductile failure of structural metals is a pervasive issue for applications such as automotive manufacturing, transportation infrastructures, munitions and armor, and energy generation. Experimental investigation of all relevant failure scenarios is intractable, requiring reliance on computation models. Our confidence in model predictions rests on unbiased assessments of the entire predictive capability, including the mathematical formulation, numerical implementation, calibration, and execution.
Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in (Formula presented.) 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.
Evermore sophisticated ductile plasticity and failure models demand experimental material characterization of shear behavior; yet, the mechanics community lacks a widely accepted, standard test method for shear-dominated deformation and failure of ductile metals. We investigated the use of the V-notched rail test, borrowed from the ASTM D7078 standard for shear testing of composites, for shear testing of Ti-6Al-4V titanium alloy sheet material, considering sheet rolling direction and quasi-static and transient load rates. In this paper, we discuss practical aspects of testing, modifications to the specimen geometry, and the experimental shear behavior of Ti-6Al-4V. Specimen installation, machine compliance, specimen-grip slip during testing, and specimen V-notched geometry all influenced the measured specimen behavior such that repeatable shear-dominated behavior was initially difficult to obtain. We will discuss the careful experimental procedure and set of measurements necessary to extract meaningful shear information for Ti-6Al-4V. We also evaluate the merits and deficiencies, including practicality of testing for engineering applications and quality of results, of the V-notched rail test for characterization of ductile shear behavior.
The 2014 WSEAT X-Prize is modeled as a double blind study to challenge the computational and material mechanics communities methodologies to develop better capabilities in modeling and experimentation to predict the failure in ductile metals. The challenge is presented as a distinct, yet relatively, simple geometry with all reported modeling predictions blind to each of the modeling teams. The experimental testing is validated by two independent test labs to confirm the experimentally observed behavior and results are unbiased and repeatable. The WSEAT X-Prize was issued to both external participants and internal participants as the Sandia Fracture Challenge 2 (SFC2) on May 30, 2014. A Challenge Supplemental Information Packet was sent to participants on August 13, 2014 to Prior years SFCs focused on the ability to predict failures under a quasi-static loading condition that focused on either a shear or tensile-dominated failure mode. This year’s challenge focuses on a geometry with a shear and/or tensile-dominated failure mode influenced by a moderate strain-rate ductile fracture in a metallic alloy.
The Virtual Fields Method (VFM) is an inverse method for constitutive model parameter identication that relies on full-eld experimental measurements of displacements. VFM is an alternative to standard approaches that require several experiments of simple geometries to calibrate a constitutive model. VFM is one of several techniques that use full-eld exper- imental data, including Finite Element Method Updating (FEMU) techniques, but VFM is computationally fast, not requiring iterative FEM analyses. This report describes the im- plementation and evaluation of VFM primarily for nite-deformation plasticity constitutive models. VFM was successfully implemented in MATLAB and evaluated using simulated FEM data that included representative experimental noise found in the Digital Image Cor- relation (DIC) optical technique that provides full-eld displacement measurements. VFM was able to identify constitutive model parameters for the BCJ plasticity model even in the presence of simulated DIC noise, demonstrating VFM as a viable alternative inverse method. Further research is required before VFM can be adopted as a standard method for constitu- tive model parameter identication, but this study is a foundation for ongoing research at Sandia for improving constitutive model calibration.