Publications

Results 1–25 of 28

Search results

Jump to search filters

Effect of Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Additively Manufactured Ti Alloys

Sugar, Joshua D.; Antoun, Bonnie R.; Nishimoto, Ryan K.; Cebrian, Javier C.; Rogers, Meghan J.; Chames, Jeff; Lebrun, Tyler

A previous SAND report, SAND2020-11353 described the basic metallurgical and surface roughness properties of additively manufactured Ti-64 material made using a powder bed fusion process. As part of that work, material was post-processed using a hot isostatic press (HIP) to densify and heat treat the material. This report is meant as an addendum to the original report and to provide specific data on material processed with HIP. The main focus of this report is to show the effects of HIP on the m

More Details

Recrystallization, melting, and erosion of dispersoid-strengthened tungsten materials during exposure to DIII-D plasmas

Kolasinski, Robert K.; Coburn, Jonathan D.; Truong, Dinh D.; Watkins, Jonathan G.; Abrams, Tyler; Fang, Z.Z.; Nygren, Richard E.; Leonard, Anthony; Ren, Jun; Wang, Huiqian; Whaley, Josh; Bykov, Igor; Glass, Fenton; Herfindal, Jeffrey; Hood, Ryan T.; Lasnier, Charles; Marini, Claudio; Mclean, Adam; Moser, Auna; Nishimoto, Ryan K.; Sugar, Joshua D.; Wilcox, Robert; York, Warren

Abstract not provided.

Electroless deposition of palladium on macroscopic 3D-printed polymers with dense microlattice architectures for development of multifunctional composite materials

Journal of the Electrochemical Society

Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.; Robinson, David R.

A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commercially available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. The ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.

More Details

Development of transport properties characterization capabilities for thermoelectric materials and modules

Materials Research Society Symposium Proceedings

Reyes, Karla R.; Whaley, Josh A.; Nishimoto, Ryan K.; Yang, Nancy Y.

Thermoelectric (TE) generators have very important applications, such as emerging automotive waste heat recovery and cooling applications. However, reliable transport properties characterization techniques are needed in order to scale-up module production and thermoelectric generator design DOE round-robin testing found that literature values for figure of merit (ZT) are sometimes not reproducible in part for the lack of standardization of transport properties measurements. In Sandia National Laboratories (SNL), we have been optimizing transport properties measurements techniques of TE materials and modules. We have been using commercial and custom-built instruments to analyze the perfomance of TE materials and modules We developed a reliable procedure to measure thermal conductivity, seebeck coefficient and resistivity of TE materials to calculate the ZT as function of temperature. We use NIST standards to validate our procedures and measure multiple samples of each specific material to establish consistency. Using these developed thermoelectric capabilities, we studied transport properties of BizTe, based alloys diermal aged up to 2 years. Parallel with analytical and microscopy studies, we correlated transport properties changes with chemical changes. Also, we have developed a resistance mApplng setup to measure the contact resistance of Au contacts on TE materials and TE modules as a whole in a non-destnictive way. The development of novel but reliable characterization techniques has been fundamental to better understand TE materials as fimction of aging hme, temperature and environmental conditions.

More Details
Results 1–25 of 28
Results 1–25 of 28