Publications

Results 1–25 of 84

Search results

Jump to search filters

Experimental and computational study of polystyrene sulfonate breakdown by a Fenton reaction

Polymer Degradation and Stability

Kent, Michael S.; Landera, Alexander L.; Martinez, Daniella V.; Salinas, Jay; Rodriguez Ruiz, Jose A.; Martinez, Estevan J.; Davydovich, Oleg

Experimental studies and ab initio quantum chemistry calculations were combined to investigate the process by which a Fenton reaction breaks down polystyrene sulfonate. The experimental results show that both molecular weight reduction and loss of aromaticity occur nearly simultaneously, a finding that is supported by the calculations. The results show that more than half of the material is broken down to low molecular weight compounds (< 500 g/mol) with two molar equivalents of H2O2 per styrene monomer. The calculations provide insights into the reaction pathways and indicate that at least two hydroxyl radicals are required to cleave backbone C–C bonds or to eliminate aromaticity. The calculations also show that, of the aromatic carbons, hydroxyl radical is most likely to add to the carbon bonded to sulfur. This finding explains the loss of hydrogen sulfite anion early in the process and also the efficient reduction of Fe(III) to Fe(II) through semiquinone formation. Taken together the experimental and computational results indicate that the reaction is very efficient and that very little H2O2 is lost to unproductive reactions. This high efficiency is attributed to the close association of Fe atoms with the sulfonate group such that hydroxyl radicals are generated near the polymer chains.

More Details

Encapsulated Transition Metal Catalysts Enable Long-term Stability in Frontal Polymerization Resins

Macromolecules

Leguizamon, Samuel C.; Davydovich, Oleg; Greenlee, Andrew J.; Jones, Brad H.; Appelhans, Leah A.; Warner, Matthew J.; Kent, Michael S.; Gallegos, Shantae C.; Jansen, Annika L.; Roach, Devin J.; Root, Harrison; Cardenas, Jorge A.

Frontal polymerization involves the propagation of a thermally driven polymerization wave through a monomer solution to rapidly generate high-performance polymeric materials with little energy input. The balance between latent catalyst activation and sufficient reactivity to sustain a front can be difficult to achieve and often results in systems with poor storage lives. This is of particular concern for frontal ring-opening metathesis polymerization (FROMP) where gelation occurs within a single day of resin preparation due to the highly reactive nature of Grubbs-type catalysts. In this report we demonstrate the use of encapsulated catalysts to provide remarkable latency to frontal polymerization systems, specifically using the highly active dicyclopentadiene monomer system. Negligible differences were observed in the frontal velocities or thermomechanical properties of the resulting polymeric materials. FROMP systems with encapsulated catalyst particles are shown with storage lives exceeding 12 months and front rates that increase over a well-characterized 2 month period. Moreover, the modularity of this encapsulation method is demonstrated by encapsulating a platinum catalyst for the frontal polymerization of silicones by using hydrosilylation chemistry.

More Details

Depolymerization of lignin for biological conversion through sulfonation and a chelator-mediated Fenton reaction

Green Chemistry

Martinez, Daniella V.; Rodriguez Ruiz, Jose A.; Juarros, Miranda A.; Martinez, Estevan J.; Alam, Todd M.; Simmons, Blake A.; Sale, Kenneth L.; Singer, Steven W.; Kent, Michael S.

The generating value from lignin through depolymerization and biological conversion to valuable fuels, chemicals, or intermediates has great promise but is limited by several factors including lack of cost-effective depolymerization methods, toxicity within the breakdown products, and low bioconversion of the breakdown products. High yield depolymerization of natural lignins requires cleaving carbon-carbon bonds in addition to ether bonds. To address that need, we report that a chelator-mediated Fenton reaction can efficiently cleave C-C bonds in sulfonated polymers at or near room temperature, and that unwanted repolymerization can be minimized through optimizing reaction conditions. This method was used to depolymerize lignosulfonate from Mw = 28,000 g/mol to Mw = 800 g/mol. The breakdown products were characterized by SEC, FTIR and NMR and evaluated for bioavailability. The breakdown products are rich in acid, aldehyde, and alcohol functionalities but are largely devoid of aromatics and aliphatic dienes. A panel of nine organisms were tested for the ability to grow on the breakdown products. Growth at a low level was observed for several monocultures on the depolymerized LS in absence of glucose. Much stronger growth was observed in the presence of 0.2% glucose and for one organism we demonstrate doubling of melanin production in the presence of depolymerized LS. The results suggest that this chelator-mediated Fenton method is a promising new approach for biological conversion of lignin into higher value chemicals or intermediates.

More Details

Computational Modeling To Adapt Neutralizing Antibody

Kent, Michael S.

Monoclonal antibodies (mAbs) is the leading therapy for viral infections because it provides immediate protection and can be administered at higher levels than in a natural immune response. Finding mAbs that neutralize a broad spectrum of viral targets has proven difficult because many species and strains exist and blanket targeting is a slow and laborious process to experimentally screen 108 variants. A new method is needed to rapidly redesign mAbs for homologous targets. This project speeds up redesign using structure-based computational design to reduce the mAbs search space to a manageable level and screen mutants at a much higher rate than in experiments. Computation will also provide critical knowledge about the fundamental interactions. The project will adapt S230, a human antibody that neutralizes SARS-CoV, to neutralize SARS-COV-2.

More Details

Screening for Dimerization Inhibitors for Bacterial Acetyl CoA Carboxylase

Kent, Michael S.; Sale, Kenneth L.; Ricken, James B.; Martinez, Daniella V.; Juarros, Miranda J.; Walrdop, Grover

The goal of this project was to develop compounds that kill biothreat bacteria by inhibiting the activity of bacterial acetyl CoA carboxylase (ACC) by blocking dimerization of one component of that enzyme complex, biotin carboxylase (BC). The ultimate goal is to combine a BC dimerization inhibitor with an existing active site inhibitor for carboxytransferase, another component of ACC, to form a new dual inhibitor therapy for this essential enzyme to avoid onset of resistance. Developing medical countermeasures to defeat antibiotic resistance in biothreat agents is of interest for national security for protecting both warfighters and the public.

More Details

Efficient conversion of lignin into a water-soluble polymer by a chelator-mediated Fenton reaction: optimization of H 2 O 2 use and performance as a dispersant

Green Chemistry

Kent, Michael S.; Zeng, Jijiao; Rader, Nadeya; Avina, Isaac C.; Simoes, Casey T.; Brenden, Christopher K.; Busse, Michael B.; Watt, John D.; Giron, Nicholas H.; Allendorf, Mark D.; Simmons, Blake A.; Bell, Nelson S.; Sale, Kenneth L.

Transforming lignin into a water-soluble polymer.

More Details
Results 1–25 of 84
Results 1–25 of 84