Publications

Results 1–25 of 139

Search results

Jump to search filters

Investigation of an Intermittent Binary Control Strategy for Distributed Aerodynamic Control Devices for Load Alleviation in Wind Turbine Blades

Anderson, Evan M.; Motes, Austin G.; Sproul, Evan G.; Mertz, Ben; Paquette, Joshua P.

A study was conducted of an intermittent binary control strategy for trailing edge flaps and leading edge spoilers installed on wind turbine blades for the purpose of load alleviation. Cost estimation models were developed for the systems to predict overall impact on levelized cost of energy over the lifecycle of the turbine system. Aeroelastic simulations of turbines with the control strategy implemented showed improved levelized cost for some, but not all cases.

More Details

Land-based wind turbines with flexible rail-transportable blades - Part 2: 3D finite element design optimization of the rotor blades

Wind Energy Science

Camarena, Ernesto C.; Anderson, Evan M.; Paquette, Joshua P.; Bortolotti, Pietro; Feil, Roland; Johnson, Nick

Increasing growth in land-based wind turbine blades to enable higher machine capacities and capacity factors is creating challenges in design, manufacturing, logistics, and operation. Enabling further blade growth will require technology innovation. An emerging solution to overcome logistics constraints is to segment the blades spanwise and chordwise, which is effective, but the additional field-assembled joints result in added mass and loads, as well as increased reliability concerns in operation. An alternative to this methodology is to design slender flexible blades that can be shipped on rail lines by flexing during transport. However, the increased flexibility is challenging to accommodate with a typical glass-fiber, upwind design. In a two-part paper series, several design options are evaluated to enable slender flexible blades: downwind machines, optimized carbon fiber, and active aerodynamic controls. Part 1 presents the system-level optimization of the rotor variants as compared to conventional and segmented baselines, with a low-fidelity representation of the blades. The present work, Part 2, supplements the system-level optimization in Part 1 with high-fidelity blade structural optimization to ensure that the designs are at feasible optima with respect to material strength and fatigue limits, as well as global stability and structural dynamics constraints. To accommodate the requirements of the design process, a new version of the Numerical Manufacturing And Design (NuMAD) code has been developed and released. The code now supports laminate-level blade optimization and an interface to the International Energy Agency Wind Task 37 blade ontology. Transporting long, flexible blades via controlled flapwise bending is found to be a viable approach for blades of up to 100m. The results confirm that blade mass can be substantially reduced by going either to a downwind design or to a highly coned and tilted upwind design. A discussion of active and inactive constraints consisting of material rupture, fatigue damage, buckling, deflection, and resonant frequencies is presented. An analysis of driving load cases revealed that the downwind designs are dominated by loads from sudden, abrupt events like gusts rather than fatigue. Finally, an analysis of carbon fiber spar caps for downwind machines finds that, compared to typical carbon fibers, the use of a new heavy-tow carbon fiber in the spar caps is found to yield between 9% and 13% cost savings. Copyright:

More Details

Big Adaptive Rotor Phase I Final Report

Johnson, Nick; Paquette, Joshua P.; Bortolotti, Pietro; Bolinger, Mark; Camarena, Ernesto C.; Anderson, Evan M.; Ennis, Brandon L.

The Big Adaptive Rotor (BAR) project was initiated by the U.S. Department of Energy (DOE) in 2018 with the goal of identifying novel technologies that can enable large (>100 meter [m]) blades for low-specific-power wind turbines. Five distinct tasks were completed to achieve this goal: 1. Assessed the trends, impacts, and value of low-specific-power wind turbines; 2. Developed a wind turbine blade cost-reduction road map study; 3. Completed research-and-development opportunity screening; 4. Performed detailed design and analysis; and, 5. Assessed low-cost carbon fiber. These tasks were completed by the national laboratory team consisting of Sandia National Laboratories (Sandia), the National Renewable Energy Laboratory (NREL), and Lawrence Berkeley National Laboratory.

More Details
Results 1–25 of 139
Results 1–25 of 139