Progress towards next-generation internal combustion engine technologies is dramatically hindered by the complexity of both simulating and measuring key processes, such as thermal stratification and soot formation, in an operating prototype. In general, spectroscopic methods for in-operando probing become limitingly complex at the high pressures and temperature encountered in such systems, and numerical methods for simulating device performance become computationally expensive due to the turbulent flow field, detailed chemistry, and range of important length-scales involved. This report presents parallel experimental and theoretical advances to conquer these limitations. We report the development of high pressure and high temperature ultrafast coherent anti-Stokes Raman spectroscopy measurements, up to a pressure and temperature regime relevant to engine conditions. This report also presents theoretical results using a stochastic one-dimensional turbulence (ODT) model providing insight into the local thermochemical state and its consequences by resolving the full range of reaction-diffusion scales in a stochastic model.
This study addresses predicting the internal thermochemical state in buoyant fire plumes using largeeddy simulations (LES) with a tabular flamelet library for the underlying flame chemistry. Buoyant fire plumes are characterized by moderate turbulent mixing, soot growth and oxidation and radiation transport. Soot moments, mixture fraction and enthalpy evolve in the LES with soot source terms given by the non-adiabatic flamelet library. Participating media radiation transport is predicted using the discrete ordinates method with source terms also from the flamelet library, and the LES subgrid-scale modeling is based on a one-equation kinetic-energy sub-filter model. This library is generated with flamelet states that include unsteady heat loss through extinction nominally representing radiative quenching. We describe the performance of this model both in the context of a laminar coflow configuration where extensive measurements are available and in buoyant turbulent fire plumes where measurements are more global.
The surface area dependence of the decomposition reaction between lithiated graphites and electrolytes for temperatures above 100◦C up to ~200◦C is explored through comparison of model predictions to published calorimetry data. The initial rate of the reaction is found to scale super-linearly with the particle surface area. Initial reaction rates are suggested to scale with edge area, which has also been measured to scale super-linearly with particle area. As in previous modeling studies, this work assumes that electron tunneling through the solid electrolyte interphase (SEI) limits the rate of the reaction between lithium and electrolyte. Comparison of model predictions to calorimetry data indicates that the development of the tunneling barrier is not linear with BET surface area; rather, the tunneling barrier correlates best with the square root of specific surface area. This result suggests that tunneling though the SEI may be controlled by defects with linear characteristics. The effect of activation energy on the tunneling-limited reaction is also investigated. The modified area dependence results in a model that predicts with reasonable accuracy the range of observed heat-release rates in the important temperature range from 100◦C to 200◦C where transition to thermal runaway typically occurs at the cell level.
ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzed to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this paper, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.
Turbulent fluctuations of the scalar dissipation rate have a major impact on extinction in non-premixed combustion. Recently, an unsteady extinction criterion has been developed (Hewson, 2013) that predicts extinction dependent on the duration and the magnitude of dissipation rate fluctuations exceeding a critical quenching value; this quantity is referred to as the dissipation impulse. The magnitude of the dissipation impulse corresponding to unsteady extinction is related to the difficulty with which a flamelet is exintguished, based on the steady-state S-curve. In this paper we evaluate this new extinction criterion for more realistic dissipation rates by evolving a stochastic Ornstein-Uhlenbeck process for the dissipation rate. A comparison between unsteady flamelet evolution using this dissipation rate and the extinction criterion exhibit good agreement. The rate of predicted extinction is examined over a range of Damköhler and Reynolds numbers and over a range of the extinction difficulty. The results suggest that the rate of extinction is proportional to the average dissipation rate and the area under the dissipation rate probability density function exceeding the steady-state quenching value. It is also inversely related to the actual probability that this steady-state quenching dissipation rate is observed and the difficulty of extinction associated with the distance between the upper and middle branches of the S-curve.