In-situ PDF/DRIFTS Study of Nanoparticle Formation in Zeolites
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Coordination Chemistry
The coordination behavior of the tridentate alkoxy ligand 6,6'-(((2-hydroxyethyl)azanediyl)bis(methylene)) bis(2,4-di-tert-butylphenol) (termed H3-AM-DBP2) with group 4 metal alkoxides ([M(OR)4]) in a 1:1 ratio was previously found to generate [(ONep)Ti(κ 4 (O,O’,O”,N)-AM-DBP2)] and [(OR)Zr(κ 4 (μ-O,O’,O”,N)-AM-DBP2)]2 (M = Zr, Hf). Additional studies revealed that increasing the stoichiometric ratio to 1:2 H3-AM-DBP2:[M(OR)4] led to the isolation of [(ONep)Ti(κ 4 (μ-O,O’,O”,N)-AM-DBP2)(μ-ONep)Ti(ONep)3] (1)•tol, [(OBu t)Zr(κ 4 (μ-O,O’,O”,N)-AM-DBP2)(μ-OBu t)Zr(OBu t)3] (2) and [(OBu t)Hf(κ 4 (μ-O,O’,O”,N)-AM-DBP2)(μ-OBu t)Hf(OBu t)3] (3). The asymmetric dinuclear complexes of 1-3 resemble the chelation of a [M(OR)4] moiety to a “(OR)M(κ 4 (O,O’,O”,N)-AM-DBP2)” fragment. The metal complexed by the AM-DBP2 ligand has a pseudo octahedral geometry while the other metal adopts an intermediate trigonal bipyramidal (TBP-5)/square base pyramidal (SBP-5) geometry for 1 but a distorted SBP-5 for both 2 and 3. The structure and properties of 1-3 were analyzed by computational modeling and fully characterized by standard analytical methods. (Figure presented.).
Abstract not provided.
Langmuir
Permeability of salt formations is controlled by the equilibrium between the salt-brine and salt-salt interfaces described by the dihedral angle, which can change with the composition of the intergranular brine. Here, classical molecular dynamics (MD) simulations were used to investigate the structure and properties of the salt-brine interface to provide insight into the stability of salt systems. Mixed NaCl-KCl brines were investigated to explore differences in ion size on the surface energy and interface structure. Nonlinearity was noted in the salt-brine surface energy with increasing KCl concentration, and the addition of 10% KCl increased surface energies by 2-3 times (5.0 M systems). Size differences in Na+ and K+ ions altered the packing of dissolved ions and water molecules at the interface, impacting the surface energy. Additionally, ions at the interface had lower numbers of coordinating water molecules than those in the bulk and increased hydration for ions in systems with 100% NaCl or 100% KCl brines. Ultimately, small changes in brine composition away from pure NaCl altered the structure of the salt-brine interface, impacting the dihedral angle and the predicted equilibrium permeability of salt formations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Molecules
Magnesium oxide (MgO) can convert to different magnesium-containing compounds depending on exposure and environmental conditions. Many MgO-based phases contain hydrated species allowing 1H-nuclear magnetic resonance (NMR) spectroscopy to be used in the characterization and quantification of proton-containing phases; however, surprisingly limited examples have been reported. Here, 1H-magic angle spinning (MAS) NMR spectra of select Mg-based minerals are presented and assigned. These experimental results are combined with computational NMR density functional theory (DFT) periodic calculations to calibrate the predicted chemical shielding results. This correlation is then used to predict the NMR shielding for a series of different MgO hydroxide, magnesium chloride hydrate, magnesium perchlorate, and magnesium cement compounds to aid in the future assignment of 1H-NMR spectra for complex Mg phases.
Journal of Physical Chemistry. C
Zeolite-supported Ag0 clusters have broad applications from catalysis to medicine, necessitating a mechanistic understanding of the formation of Ag0 clusters in situ. Density functional theory (DFT) simulations have been performed on silver, water, and silver–water clusters in silica mordenite (Si-MOR), to identify the role of the confinement on the structure and energetics of Ag0 cluster formation. The most favorable binding energy in the 12-membered ring (MR) pore of the Si-MOR is a 10–15-atom Ag0 cluster. Computational pair distribution function (PDF) data indicates that the Ag0 and Ag0–H2O clusters formed in vacuum versus in Si-MOR exhibit structural differences. Additionally, when the Ag0 cluster is confined, the density decreases and the surface area increases, hypothesized to be due to the limiting geometry of the 12-MR main channel. An energetic drive toward formation of larger Ag0 clusters was also identified, with hydrated silver atoms generating higher energy structures. In conclusion, this work identifies mechanistic and structural insight into the role of nanoconfinement on formation of Ag0 clusters in mordenite.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
Organic linkers in metal-organic framework (MOF) materials exhibit differences in hydrogen bonding (H-bonding), which can alter the geometric, electronic, and optical properties of the MOF. Density functional theory (DFT) simulations were performed on a photoluminescent Y-2,5-dihydroxyterephthalic acid (DOBDC) MOF with H-bonding concentrations between 0 and 100%; the H-bonds were located on both bidentate-and monodentate-bound DOBDC linkers. At 0% H-bond concentration in the framework, the lattice parameters contracted, the density increased, and simulated X-ray diffraction patterns shifted. Comparison with published experimental data identified that Y-DOBDC MOF structures must have a degree of H-bond concentration. The concentration of H-bonds in the system shifted the calculated band gap energy from 2.25 eV at 100% to 3.00 eV at 0%. The band gap energies also indicate a distinction of H-bonds formed on bidentate-coordinated linkers compared to those on monodentate linkers. Additionally, when the calculated optical spectra are compared with experimental data, the ligand-to-ligand charge-transfer luminescence in Y-DOBDC MOFs is expected to result from an average of 20-40% H-bonding with at least 50% of the bidentate linkers containing H-bonding. Therefore, the type of H-bonding within the DOBDC linker determines the electronic structure and the optical absorption of the MOF framework structure. Tuning of the H-bonding in rare-earth MOFs provides an opportunity to control the specific optical and adsorption properties of the MOF framework on the basis of reactions between the linker and the environment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Surface Science
HfC has shown promise as a material for field emission due to the low work function of the (100) surface and a high melting point. Recently, HfC tips have exhibited unexpected failure after field emission at 2200 K. Characterization of the HfC tips identified faceting of the parabolic tip dominated by coexisting (100) and (111) surfaces. To investigate this phenomenon, we used density functional theory (DFT) simulations to identify the role of defects and impurities (Ta, N, O) on HfC surface properties. Carbon vacancies increased the surface energy of the (100) surface from 2.35 J/m2 to 4.75 J/m2 and decreased the surface energy of the carbon terminated (111) surface from 8.75 J/m2 to 3.48 J/m2. Once 60% of the carbon on the (100) surface have been removed the hafnium terminated (111) surface becomes the lowest energy surface, suggesting that carbon depletion may cause these surfaces to coexist. The addition of Ta and N impurities to the surface are energetically favorable and decrease the work function, making them candidate impurities for improving field emission at high temperatures. Overall, DFT simulations have demonstrated the importance of understanding the role of defects on the surface structure and properties of HfC.
Abstract not provided.
ACS Applied Materials and Interfaces
Acid gases (e.g., NOx and SOx), commonly found in complex chemical and petrochemical streams, require material development for their selective adsorption and removal. Here, we report the NOx adsorption properties in a family of rare earth (RE) metal–organic frameworks (MOFs) materials. Fundamental understanding of the structure–property relationship of NOx adsorption in the RE-DOBDC materials platform was sought via a combined experimental and molecular modeling study. No structural change was noted following humid NOx exposure. Density functional theory (DFT) simulations indicated that H2O has a stronger affinity to bind with the metal center than NO2, while NO2 preferentially binds with the DOBDC ligands. Further modeling results indicate no change in binding energy across the RE elements investigated. Also, stabilization of the NO2 and H2O molecules following adsorption was noted, predicted to be due to hydrogen bonding between the framework ligands and the molecules and nanoconfinement within the MOF structure. This interaction also caused distinct changes in emission spectra, identified experimentally. As a result, calculations indicated that this is due to the adsorption of NO2 molecules onto the DOBDC ligand altering the electronic transitions and the resulting photoluminescent properties, a feature that has potential applications in future sensing technologies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Frontiers in Materials
Glassy silicates are substantially weaker when in contact with aqueous electrolyte solutions than in vacuum due to chemical interactions with preexisting cracks. To investigate this silicate weakening phenomenon, classical molecular dynamics (MD) simulations of silica fracture were performed using the bond-order based, reactive force field ReaxFF. Four different environmental conditions were investigated: vacuum, water, and two salt solutions (1M NaCl, 1M NaOH) that form relatively acidic and basic solutions, respectively. Any aqueous environment weakens the silica, with NaOH additions resulting in the largest decreases in the effective fracture toughness (eKIC) of silica or the loading rate at which the fracture begins to propagate. The basic solution leads to higher surface deprotonation, narrower radius of curvature of the crack tip, and greater weakening of the silica, compared with the more acidic environment. The results from the two different electrolyte solutions correspond to phenomena observed in experiments and provide a unique atomistic insight into how anions alter the chemical-mechanical fracture response of silica.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Omega
Magnesium oxide (MgO)-engineered barriers used in subsurface applications will be exposed to high concentration brine environments and may form stable intermediate phases that can alter the effectiveness of the barrier. To explore the formation of these secondary intermediate phases, MgO was aged in water and three different brine solutions and characterized with X-ray diffraction (XRD) and 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. After aging, there is ∼4% molar equivalent of a hydrogen-containing species formed. The 1H MAS NMR spectra resolved multiple minor phases not visible in XRD, indicating that diverse disordered proton-containing environments are present in addition to crystalline Mg(OH)2 brucite. Density functional theory (DFT) simulations for the proposed Mg-O-H-, Mg-Cl-O-H-, and Na-O-H-containing phases were performed to index resonances observed in the experimental 1H MAS NMR spectra. Although the intermediate crystal structures exhibited overlapping 1H NMR resonances in the spectra, Mg-O-H intermediates were attributed to the growth of resonances in the δ +1.0 to 0.0 ppm region, and Mg-Cl-O-H structures produced the increasing contributions of the δ = +2.5 to 5.0 ppm resonances in the chloride-containing brines. Overall, 1H NMR analysis of aged MgO indicates the formation of a wide range of possible intermediate structures that cannot be observed or resolved in the XRD analysis.