Publications

Results 51–75 of 186

Search results

Jump to search filters

Polycapillary x-ray lenses for single-shot, laser-driven powder diffraction

Review of Scientific Instruments

Schollmeier, Marius; Ao, Tommy; Field, Ella; Galloway, Benjamin R.; Foulk, James W.; Kimmel, Mark; Morgan, D.V.; Rambo, Patrick K.; Schwarz, Jens; Shores, Jonathon; Smith, Ian C.; Speas, Christopher S.; Foulk, James W.; Porter, John L.

X-ray diffraction measurements to characterize phase transitions of dynamically compressed high-Z matter at Mbar pressures require both sufficient photon energy and fluence to create data with high fidelity in a single shot. Large-scale laser systems can be used to generate x-ray sources above 10 keV utilizing line radiation of mid-Z elements. However, the laser-to-x-ray energy conversion efficiency at these energies is low, and thermal x-rays or hot electrons result in unwanted background. We employ polycapillary x-ray lenses in powder x-ray diffraction measurements using solid target x-ray emission from either the Z-Beamlet long-pulse or the Z-Petawatt (ZPW) short-pulse laser systems at Sandia National Laboratories. Polycapillary lenses allow for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. This enables diffraction measurements up to 16 keV at the few-photon signal level as well as diffraction experiments with ZPW at full intensity.

More Details

X-Ray Diffraction Measurements on Laser-Compressed Polycrystalline Samples Using a Short-Pulse Laser Generated X-Ray Source

Schollmeier, Marius; Ao, Tommy; Field, Ella; Galloway, Benjamin R.; Foulk, James W.; Kimmel, Mark; Long, Joel; Morgan, Dane V.; Rambo, Patrick K.; Schwarz, Jens; Seagle, Christopher T.

Existing models for most materials do not describe phase transformations and associated lattice dy- namics (kinetics) under extreme conditions of pressure and temperature. Dynamic x-ray diffraction (DXRD) allows material investigations in situ on an atomic scale due to the correlation between solid-state structures and their associated diffraction patterns. In this LDRD project we have devel- oped a nanosecond laser-compression and picosecond-to-nanosecond x-ray diffraction platform for dynamically-compressed material studies. A new target chamber in the Target Bay in building 983 was commissioned for the ns, kJ Z-Beamlet laser (ZBL) and the 0.1 ns, 250 J Z-Petawatt (ZPW) laser systems, which were used to create 8-16 keV plasma x-ray sources from thin metal foils. The 5 ns, 15 J Chaco laser system was converted to a high-energy laser shock driver to load material samples to GPa stresses. Since laser-to-x-ray energy conversion efficiency above 10 keV is low, we employed polycapillary x-ray lenses for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. Polycapillary lenses enabled diffraction measurements up to 16 keV with ZBL as well as diffraction experiments with ZPW. This x-ray diffraction platform supports experiments that are complementary to gas guns and the Z facility due to different strain rates. Ultimately, there is now a foundation to evaluate DXRD techniques and detectors in-house before transferring the technology to Z. This page intentionally left blank.

More Details

Pushing Laser Pre-Heat in MagLIF

Geissel, Matthias; Harvey-Thompson, Adam J.; Fein, Jeffrey R.; Woodbury, Daniel; Davis, Daniel R.; Bliss, David E.; Scoglietti, Daniel J.; Gomez, Matthew R.; Ampleford, David J.; Awe, Thomas J.; Colombo, Anthony; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Slutz, Stephen A.; Ruiz, Daniel E.; Peterson, K.J.; Smith, Ian C.; Shores, Jonathon; Kimmel, Mark; Rambo, Patrick K.; Schwarz, Jens; Galloway, Benjamin R.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

A Window-less Target for Magnetized Liner Inertial Fusion Characterized using High-Speed Solid-State Framing Cameras

Colombo, Anthony; Schwarz, Jens; Rambo, Patrick K.; Galloway, Benjamin R.; Kimmel, Mark; Slutz, Stephen A.; Weis, Matthew R.; Claus, Liam; England, Troy D.; Fang, Lu; Looker, Quinn M.; Mitchell, Brandon; Montoya, Andrew; Robertson, Gideon; Rochau, G.A.; Sanchez, Marcos O.; Stahoviak, John W.; Hund, Jared; Sin, Justin; Porter, John L.

Abstract not provided.

Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

Physics of Plasmas

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Speas, Christopher S.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Peterson, K.J.; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

More Details

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David J.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, P.F.; Laity, George R.; Martin, Matthew R.; Nagayama, Taisuke; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul; Schwarz, Jens; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund; Cuneo, Michael E.; Jones, Brent M.; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel; Stygar, William A.

Abstract not provided.

The Differential Absorption Hard X-Ray Spectrometer at the Z Facility

IEEE Transactions on Plasma Science

Bell, K.; Coverdale, Christine A.; Ampleford, David J.; Bailey, James E.; Loisel, Guillaume P.; Harper-Slaboszewicz, V.; Schwarz, Jens; Moy, Kenneth

The differential absorption hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of seven Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the hard X-ray spectrometer that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources driven by the Z machine.

More Details

Progress in Preconditioning MagLIF fuel and its Impact on Performance

Peterson, K.J.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Geissel, Matthias; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Schollmeier, Marius; Schwarz, Jens; Sefkow, Adam B.; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Pre-Heat Optimization for Magnetized Liner Inertial Fusion at Sandia

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Peterson, K.J.; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Developing a Pre-Heat Platform for MagLIF with Z-Beamlet

Geissel, Matthias; Awe, Thomas J.; Bliss, David E.; Campbell, Edward M.; Gomez, Matthew R.; Glinsky, Michael E.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Peterson, K.J.; Schollmeier, Marius; Schwarz, Jens; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.; Rochau, G.A.

Abstract not provided.

Daily operation of Z: an 80 TW 36-module pulsed power driver

Savage, Mark E.; Cuneo, Michael E.; Davis, Jean-Paul; Hutsel, Brian T.; Jones, Michael; Jones, Peter; Kamm, Ryan J.; Lopez, Michael R.; Matzen, M.K.; Mcdaniel, D.H.; Mckee, G.R.; Maenchen, J.E.; Owen, A.C.; Porter, John L.; Prestwich, K.R.; Schwarz, Jens; Sinars, Daniel; Stoltzfus, Brian; Struve, Kenneth; Stygar, William A.; Wakeland, Peter E.; White, William M.

Abstract not provided.

Results 51–75 of 186
Results 51–75 of 186