Publications

Results 51–75 of 137

Search results

Jump to search filters

Development of Dynamic Ellipsometry for Measurements or Iron Conductivity at Earth's Core Conditions

Grant, Sean C.; Ao, Tommy A.; Davis, Jean-Paul D.; Laros, James H.; Seagle, Christopher T.; Lin, Jung-Fu; Bernstein, Aaron

The CHEDS researchers are engaged in a collaborative research project to study the properties of iron and iron alloys under Earth’s core conditions. The Earth’s core, inner and outer, is composed primarily of iron, thus studying iron and iron alloys at high pressure and temperature conditions will give the best estimate of its properties. Also, comparing studies of iron alloys with known properties of the core can constrain the potential light element compositions found within the core, such as fitting sound speeds and densities of iron alloys to established inner- Earth models. One of the lesser established properties of the core is the thermal conductivity, where current estimates vary by a factor of three. Therefore, one of the primary goals of this collaboration is to make relevant measurements to elucidate this conductivity.

More Details

Results from new multi-megabar shockless compression experiments at the Z machine

AIP Conference Proceedings

Davis, Jean-Paul D.; Knudson, Marcus D.; Brown, Justin L.

Sandia's Z Machine has been used to magnetically drive shockless compression of materials in a planar configuration to multi-megabar pressure levels, allowing accurate measurements of quasi-isentropic mechanical response at relatively low temperatures in the solid phase. This paper details recent improvements to design and analysis of such experiments, including the use of new data on the mechanical and optical response of lithium fluoride windows. Comparison of windowed and free-surface data on copper to 350 GPa lends confidence to the window correction method. Preliminary results are presented on gold to 500 GPa and platinum to 450 GPa; both appear stiffer than existing models.

More Details

Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading

Journal of Applied Physics

Seagle, Christopher T.; Davis, Jean-Paul D.; Knudson, Marcus D.

Single crystal lithium fluoride (LiF), oriented [100], was shock loaded and subsequently shocklessly compressed in two experiments at the Z Machine. Velocimetry measurements were employed to obtain an impactor velocity, shock transit times, and in-situ particle velocities for LiF samples up to ∼1.8 mm thick. A dual thickness Lagrangian analysis was performed on the in-situ velocimetry data to obtain the mechanical response along the loading path of these experiments. An elastic response was observed on one experiment during initial shockless compression from 100 GPa before yielding. The relatively large thickness differences utilized for the dual sample analyses (up to ∼1.8 mm) combined with a relative timing accuracy of ∼0.2 ns resulted in an uncertainty of less than 1% on density and stress at ∼200 GPa peak loading on one experiment and <4% on peak loading at ∼330 GPa for another. The stress-density analyses from these experiments compare favorably with recent equation of state models for LiF.

More Details

Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures

Journal of Applied Physics

Davis, Jean-Paul D.; Knudson, Marcus D.; Shulenburger, Luke N.; Crockett, Scott D.

An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performed using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ∼300 GPa, and confirming the nonlinear dependence of the refractive index on density. We present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.

More Details

Daily operation of Z: an 80 TW 36-module pulsed power driver

Savage, Mark E.; Cuneo, M.E.; Davis, Jean-Paul D.; Hutsel, Brian T.; Jones, Michael J.; Jones, Peter A.; Kamm, Ryan J.; Lopez, Michael R.; Matzen, M.K.; Mcdaniel, D.H.; McKee, George R.; Maenchen, J.E.; Owen, A.C.; Porter, John L.; Prestwich, K.R.; Schwarz, Jens S.; Sinars, Daniel S.; Stoltzfus, Brian S.; Struve, Kenneth W.; Stygar, William A.; Wakeland, P.; White, William M.

Abstract not provided.

Optimization of Isentropic Compression Loads on Current-Adder Pulsed Power Accelerator Architectures

Reisman, David R.; Waisman, Eduardo M.; Stoltzfus, Brian S.; Stygar, William A.; Cuneo, M.E.; Haill, Thomas A.; Davis, Jean-Paul D.; Brown, Justin L.; Seagle, Christopher T.; Spielman, Rick B.

The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called “bricks”, that can be individually triggered to achieve a high degree of pulse tailoring for magnetically-driven isentropic compression experiments (ICE). The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel “current-adder” architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We describe the optimization procedure for the Thor design and show results for various materials of interest. Also, we discuss the extension of these concepts to the megajoule-class Neptune machine design. Given this design, we are able to design shockless ramp-driven experiments in the 1 TPa range of material pressure.

More Details

Conceptual design of a 10 13 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

Physical Review Accelerators and Beams

Stygar, William A.; Reisman, David R.; Stoltzfus, Brian S.; Austin, Kevin N.; Laros, James H.; Breden, E.W.; Cooper, R.A.; Cuneo, M.E.; Davis, Jean-Paul D.; Ennis, J.B.; Gard, Paul D.; Greiser, G.W.; Gruner, Frederick R.; Haill, Thomas A.; Hutsel, Brian T.; Jones, Peter A.; Lechien, K.R.; Leckbee, Joshua L.; Lucero, Diego J.; McKee, George R.; Moore, James M.; Mulville, Thomas D.; Muron, David J.; Root, Seth R.; Savage, Mark E.; Sceiford, Matthew S.; Spielman, R.B.; Waisman, Eduardo M.; Wisher, Matthew L.

In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.

More Details

Dynamic compression of copper to over 450 GPa: A high-pressure standard

Physical Review B

Kraus, R.G.; Davis, Jean-Paul D.; Seagle, Christopher T.; Fratanduono, D.E.; Swift, D.C.; Brown, Justin L.; Eggert, J.H.

An absolute stress-density path for shocklessly compressed copper is obtained to over 450 GPa. A magnetic pressure drive is temporally tailored to generate shockless compression waves through over 2.5-mm-thick copper samples. The free-surface velocity data is analyzed for Lagrangian sound velocity using the iterative Lagrangian analysis (ILA) technique, which relies upon the method of characteristics. We correct for the effects of strength and plastic work heating to determine an isentropic compression path. By assuming a Debye model for the heat capacity, we can further correct the isentrope to an isotherm. Our determination of the isentrope and isotherm of copper represents a highly accurate pressure standard for copper to over 450 GPa.

More Details

Pulsed power accelerator for material physics experiments

Physical Review Special Topics - Accelerators and Beams

Reisman, David R.; Stoltzfus, Brian S.; Stygar, William A.; Austin, Kevin N.; Waisman, Eduardo M.; Hickman, Randy J.; Davis, Jean-Paul D.; Haill, Thomas A.; Knudson, Marcus D.; Seagle, Christopher T.; Brown, Justin L.

We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

More Details

Low Adiabat Compression of Liquid Deuterium Filled Cylindrical Liners to 0.1?2 Gbar

Physical Review Letters

Knapp, Patrick K.; Martin, Matthew; Dalton, Devon D.; Laros, James H.; Davis, Jean-Paul D.; Romero, Dustin H.; Cochrane, Kyle C.; Loisel, Guillaume P.; Mattsson, Thomas M.; McBride, Ryan D.; Sinars, Daniel S.

We report on experiments where cylindrical beryllium liners filled with liquid deuterium were compressed to extreme pressure and density with current pulse shaping. In one set of experiments the pressure at stagnation is inferred to be & 100 Mbar using penetrating radiography. A peak liner convergence ratio (initial radius over final radius) of 7.6 was measured resulting in an average deuterium density of 10 g=cm3 and areal density of 0.45 g=cm2. The stagnation shock propagating radially outward through the liner wall was directly measured with a strength of ≈ 120 Mbar. In a second set of experiments the liner was imploded to a peak convergence of 19 resulting in a density of 55 g=cm3 and areal density of 0.5 g=cm2. The pressure at stagnation in this experiment is estimated to be 2 Gbar. This platform enables the study of high-pressure, high-density, implosion deceleration and stagnation dynamics at spatial scales that are readily diagnosable (R ~ 0.1 -- 0.4 mm). Thus, these experiments are directly relevant to both Inertial Con nement Fusion and the study of material properties under extreme conditions.

More Details

Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

Journal of Applied Physics

Davis, Jean-Paul D.; Brown, Justin L.; Knudson, Marcus D.; Lemke, Raymond W.

Magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions with the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.

More Details
Results 51–75 of 137
Results 51–75 of 137