Publications

Results 101–125 of 303

Search results

Jump to search filters

Hydromechanical Controls on the Spatiotemporal Patterns of Injection-Induced Seismicity in Different Fault Architecture: Implication for 2013–2014 Azle Earthquakes

Journal of Geophysical Research: Solid Earth

Chang, Kyung W.; Yoon, Hongkyu Y.

Recent observations of seismic events at the subsurface energy exploration sites show that spatial and temporal correlations sometimes do not match the spatial order of the known or detected fault location from the injection well. This study investigates the coupled flow and geomechanical control on the patterns of induced seismicity along multiple basement faults that show an unusual spatiotemporal relation with induced seismicity occurring in the far field first, followed by the near field. Two possible geological scenarios considered are (1) the presence of conductive hydraulic pathway within the basement connected to the distant fault (hydraulic connectivity) and (2) no hydraulic pathway, but the coexistence of faults with mixed polarity (favorability to slip) as observed at Azle, TX. Based on the Coulomb stability analysis and seismicity rate estimates, simulation results show that direct pore pressure diffusion through a hydraulic pathway to the distant fault can generate a larger number of seismicity than along the fault close to the injection well. Prior to pore pressure diffusion, elastic stress transfer can initiate seismic activity along the favorably oriented fault, even at the longer distance to the well, which may explain the deep 2013–2014 Azle earthquake sequences. This study emphasizes that hydrological and geomechanical features of faults will locally control poroelastic coupling mechanisms, potentially influencing the spatiotemporal pattern of injection-induced seismicity, which can be used to infer subsurface architecture of fault/fracture networks.

More Details

Permeability prediction of porous media using convolutional neural networks with physical properties

CEUR Workshop Proceedings

Yoon, Hongkyu Y.; Melander, Darryl J.; Verzi, Stephen J.

Permeability prediction of porous media system is very important in many engineering and science domains including earth materials, bio-, solid-materials, and energy applications. In this work we evaluated how machine learning can be used to predict the permeability of porous media with physical properties. An emerging challenge for machine learning/deep learning in engineering and scientific research is the ability to incorporate physics into machine learning process. We used convolutional neural networks (CNNs) to train a set of image data of bead packing and additional physical properties such as porosity and surface area of porous media are used as training data either by feeding them to the fully connected network directly or through the multilayer perception network. Our results clearly show that the optimal neural network architecture and implementation of physics-informed constraints are important to properly improve the model prediction of permeability. A comprehensive analysis of hyperparameters with different CNN architectures and the data implementation scheme of the physical properties need to be performed to optimize our learning system for various porous media system.

More Details

Pore-Scale Analysis of Calcium Carbonate Precipitation and Dissolution Kinetics in a Microfluidic Device

Environmental Science and Technology

Yoon, Hongkyu Y.; Chojnicki, Kirsten C.; Martinez, Mario J.

In this work, we have characterized the calcium carbonate (CaCO3) precipitates over time caused by reaction-driven precipitation and dissolution in a micromodel. Reactive solutions were continuously injected through two separate inlets, resulting in transverse-mixing induced precipitation during the precipitation phase. Subsequently, a dissolution phase was conducted by injecting clean water (pH = 4). The evolution of precipitates was imaged in two and three dimensions (2-, 3-D) at selected times using optical and confocal microscopy. With estimated reactive surface area, effective precipitation and dissolution rates can be quantitatively compared to results in the previous works. Our comparison indicates that we can evaluate the spatial and temporal variations of effective reactive areas more mechanistically in the microfluidic system only with the knowledge of local hydrodynamics, polymorphs, and comprehensive image analysis. Our analysis clearly highlights the feedback mechanisms between reactions and hydrodynamics. Pore-scale modeling results during the dissolution phase were used to account for experimental observations of dissolved CaCO3 plumes with dissolution of the unstable phase of CaCO3. Mineral precipitation and dissolution induce complex dynamic pore structures, thereby impacting pore-scale fluid dynamics. Pore-scale analysis of the evolution of precipitates can reveal the significance of chemical and pore structural controls on reaction and fluid migration.

More Details
Results 101–125 of 303
Results 101–125 of 303