Publications

Results 76–84 of 84

Search results

Jump to search filters

Real-time discriminatory sensors for water contamination events :LDRD 52595 final report

Robinson, Alex L.; Showalter, Steven K.; Lewis, Patrick R.; Wheeler, David R.; Shelmidine, G.J.; Carrejo Simpkins, Kimberly C.; Dirk, Shawn M.; Borek, Theodore T.; Irwin, Adriane N.

The gas-phase {mu}ChemLab{trademark} developed by Sandia can detect volatile organics and semi-volatiles organics via gas phase sampling . The goal of this three year Laboratory Directed Research and Development (LDRD) project was to adapt the components and concepts used by the {mu}ChemLab{trademark} system towards the analysis of water-borne chemicals of current concern. In essence, interfacing the gas-phase {mu}ChemLab{trademark} with water to bring the significant prior investment of Sandia and the advantages of microfabrication and portable analysis to a whole new world of important analytes. These include both chemical weapons agents and their hydrolysis products and disinfection by-products such as Trihalomethanes (THMs) and haloacetic acids (HAAs). THMs and HAAs are currently regulated by EPA due to health issues, yet water utilities do not have rapid on-site methods of detection that would allow them to adjust their processes quickly; protecting consumers, meeting water quality standards, and obeying regulations more easily and with greater confidence. This report documents the results, unique hardware and devices, and methods designed during the project toward the goal stated above. It also presents and discusses the portable field system to measure THMs developed in the course of this project.

More Details

Synthesis of Pt and Au nanoparticles with a sacrificial stearonitrile shell

Proposed for publication in Chemical Communications.

Dirk, Shawn M.; Howell, Stephen W.; Wheeler, David R.

Nanoparticles have received much attention and have been the subject of many reviews. Nanoparticles have also been used to form super molecular structures for molecular electronic, and sensor applications. However, many limitations exist when using nanoparticles, including the ability to manipulate the particles post synthesis. Current methods to prepare nanoparticles employ functionalities like thiols, amines, phosphines, isocyanides, or a citrate as the metal capping agent. While these capping agents prevent agglomeration or precipitation of the particles, most are difficult to displace or impede packing in nanoparticle films due to coulombic repulsion. It is in this vein that we undertook the synthesis of nanoparticles that have a weakly bound capping agent that is strong enough to prevent agglomeration and in the case of the platinum particles allow for purification, but yet, easily displaced by other strongly binding ligands. The nanoparticles where synthesized according to the Brust method except stearonitrile was used instead of an aliphatic thiol. Both platinum and gold were examined in this manner. A representative procedure for the synthesis of platinum nanoparticles involved the phase transfer of chloroplatinic acid (0.37 g, 0.90 mmol) dissolved in water (30 mL) to a solution of tetraoctylammonium bromide (2.2 g, 4.0 mmol) in toluene (80 mL). After the chloroplatinic acid was transferred into the organic phase the aqueous phase was removed. Stearonitrile (0.23 g, 0.87 mmol) was added and sodium borohydride (0.38 g, 49 mmol) in water (25 mL) was added. The solution turned black almost immediately and after 15 min the organic phase was separated and passed through a 0.45 {micro}m Teflon filter. The resulting solution was concentrated and twice precipitated into ethanol ({approx}200 mL) to yield 0.11 g of black platinum nanoparticles. TGA experiments showed that the Pt particles contained 35% by mass stearonitrile. TEM images showed an average particle size of 1.3 {+-} 0.3 nm. A representative procedure for the synthesis of gold nanoparticles involved the transfer of hydrogen tetrachloroaurate (0.18 g, 0.53 mmol) dissolved in water (15 mL) to a solution of tetraoctylammonium bromide (1.1 g, 2.0 mmol) in toluene (40 mL). After the gold salt transferred into the organic phase the aqueous phase was removed. Stearonitrile (0.23 g, 0.87 mmol) was added and sodium borohydride (0.19 g, 5.0 mmol) in water (13 mL) was added. The solution turned dark red almost immediately, and after 15 min the organic phase was separated and passed through a 0.45 {micro}m Teflon filter. The resulting solution was used without purification via precipitation because attempts at precipitation with ethanol resulted in agglomeration. TEM images showed an average particle size of 5.3 {+-} 1.3 nm. The nanoparticles synthesized were also characterized using atomic force microscopy in tapping mode. The AFM images agree with the TEM images and show a relatively monodispersed collection of nanoparticles. Platinum nanoparticles were synthesized without stearonitrile to show that the particles were in fact capped with the stearonitrile and not the tetraoctylammonium bromide. In the absence of stearonitrile the nanoparticles would not redissolve in hexane or toluene after precipitation. While it is possible the tetraoctylammonium bromide helps prevent agglomeration by solvation into the capping stearonitrile ligand layer on the particles recovery of a quantitative amount of the starting tetraoctylammonium bromide was difficult and we cannot rule out that some small amount of tetraoctylammonium bromide serves in a synergistic capacity to help solubilize the isolated platinum particles. Several exchange reactions were carried out using the isolated Pt nanoparticles. The stearonitrile cap was exchanged for hexadecylmercaptan, octanethiol, and benzeneethylthiol. In a typical exchange reaction, Pt nanoparticles (10 mg) were suspended in hexane (10 mL) and the exchange ligand was added (50 {micro}L). The solutions were allowed to stir overnight and precipitated twice using ethanol. TGA experiments confirmed ligand exchange. We have also shown that these particles may be assembled in a layer by layer (LBL) fashion to build up three dimensional assemblies. As an example of this LBL assembly a substrate consisting of gold electrodes separated by 8 {micro}m on a quartz wafer was first functionalized by immersing in a solution of 1,8-octanedithiol (50 {micro}L) in hexane (10 mL) for 15 min, rinsed with hexane (10 mL), ethanol (10 mL), and dried under a stream of nitrogen. The scaffold was then placed in a toluene solution containing Au nanoparticles capped with stearonitrile (10 mg/mL) for 15 minutes. The scaffold was then rinsed with hexane (10 mL), ethanol (10 mL), and dried under a stream of nitrogen. The substrate was then immersed iteratively between the 1,8-octanedithiol and the Au nanoparticle solution 4 more times.

More Details

Soluble, high molecular weight polysilsesquioxanes with carboxylate functionalities [10]

Macromolecules

Rahimian, Kamyar R.; Loy, Douglas A.; Wheeler, David R.

The synthesis and characterization of soluble and processable high molecular weight polysilsesquioxanes with carboxylate functionalities was discussed. It was found that the tert-butyl functionality in these polymers was eliminated to give carboxylic acids functionalized polysilsesquioxane or methyltin carboxylatosilsesquioxane gels. The analysis showed that the polysilsesquioxane binds and removes tin through gelation.

More Details

LDRD final report on intelligent polymers for nanodevice performance control

Jamison, Gregory M.; Loy, Douglas A.; Wheeler, David R.; Shelnutt, John A.; Carr, Martin J.; Shaltout, Raafat M.

A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

More Details

Basic issues associated with four potential EUV resist schemes

Wheeler, David R.

Four of the better developed resist schemes that are outgrowths of DUV (248 and 193 nm) resist development are considered as candidates for EUV. They are as follows: trilayer, a thin imaging layer on top of a refractor masking/pattern transfer layer on top of a planarizing and processing layer (PPL); solution developed, organometallic bilayer where the imaging and masking layer have been combined into one material on top of a PPL; and finally silylated resists. They are examined in a very general form without regard to the specifics of chemistry of the variations within each group, but rather to what is common to each group and how that affects their effectiveness as candidates for a near term EUV resist. In particular they are examined with respect to sensitivity, potential resolution, optical density, etching selectivity during pattern transfer, and any issues associated with pattern fidelity such as swelling.

More Details

High silicon content silylating reagents for dry-developed positive-tone resists for extreme ultraviolet (13.5 nm) and deep ultraviolet (248 nm) microlithography

Wheeler, David R.

Recent results in the use of disilanes as silylating reagents for near-surface imaging with deep-UV (248 nm) and EUV (13.5 nm) lithography are reported. A relatively thin imaging layer of a photo-cross-linking resist is spun over a thicker layer of hard-baked resist that functions as a planarizing layer and antireflective coating. Photoinduced acid generation and subsequent heating crosslinks and renders exposed areas impermeable to an aminodisilane that reacts with the unexposed regions. Subsequent silylation and reactive ion etching afford a positive-tone image. The use of disilanes introduces a higher concentration of silicon into the polymer than is possible with silicon reagents that incorporate only one silicon atom per reactive site. The higher silicon content in the silylated polymer increases etching selectivity between exposed and unexposed regions and thereby increases the contrast. Additional improvements that help to minimize flow during silylation are also discussed, including the addition of bifunctional disilanes. We have resolved high aspect ratio, very high quality 0.20 {mu}m line and space patterns at 248 nm with a stepper having a numerical aperture (NA)= 0.53, and have resolved {<=} 0.15 {mu}m line and spaces at 13.5 nm.

More Details
Results 76–84 of 84
Results 76–84 of 84