Local electromagnetic probing was developed to allow investigation of a variety of devices in noisy electrical environments. The quality and applicability of this technique was assessed during this one year LDRD. To obtain details about the experimental setup, the devices imaged, and the experimental details, please refer to the classified report from the project manager, Will Zortman, or the NSP IA lead, Kristina Czuchlewski.
We report on the fabrication and characterization of nanocrystalline ZnO films for use as a random laser physical unclonable function (PUF). Correlation between processing conditions and film microstructure will be made to optimize the lasing properties and random response. We will specifically examine the repeatability and security of PUFs demonstrated in this novel system. This demonstration has promise to impact many of Sandia's core missions including counterfeit detection.
Here, we present simulation results quantitatively showing that circularly polarized light persists in transmission through several real-world and model fog environments better than linearly polarized light over broad wavelength ranges from the visible through the infrared. We present results for polydisperse particle distributions from realistic and measured fog environments, comparing the polarization persistence of linear and circular polarization. Using a polarization-tracking Monte Carlo program, we simulate polarized light propagation through four MODTRAN fog models (moderate and heavy radiation fog and moderate and heavy advection fog) and four real-world measured fog particle distributions (Garland measured radiation and advection fogs, Kunkel measured advection fog, and Sandia National Laboratories’ Fog Facility’s fog). Simulations were performed for each fog environment with wavelengths ranging from 0.4 to 12 µm for increasing optical thicknesses of 5, 10, and 15 (increasing fog density or sensing range). Circular polarization persists superiorly for all optical wavelength bands from the visible to the long-wave infrared in nearly all fog types for all optical thicknesses. Throughout our analysis, we show that if even a small percentage of a fog’s particle size distribution is made up of large particles, those particles dominate the scattering process. In nearly all real-world fog situations, these large particles and their dominant scattering characteristics are present. Larger particles are predominantly forward-scattering and contribute to circular polarization’s persistence superiority over broad wavelength ranges and optical thicknesses/range. Circularly polarized light can transmit over 30% more signal in its intended state compared to linearly polarized light through real-world fog environments. This work broadens the understanding of how circular polarization persists through natural fog particle distributions with natural variations in mode particle radius and single or bimodal characteristics.
Materials aging is a high-consequence failure mode in electronic systems. Such mechanisms can degrade the electrical properties of connectors, relays, wire bonds, and other interconnections. Lost performance will impact, not only that of the device, but also the function and reliability of next-level assemblies and the weapons system as a whole. The detections of changes to materials surfaces at the nanometer-scale resolution, provides a means to identify aging processes at their early stages before they manifest into latent failures that affect system-level performance and reliability. Diffusion will be studied on thin films that undergo accelerated aging using the nanometer scale characterization technique of Frequency Modulated Kelvin Probe Force Microscopy (FM-KPFM). The KPFM provides a relatively easy, non-destructive methodology that does not require high-vacuum facilities to obtain nanometer spatial resolution of surface chemistry changes. The KPFM method can provide the means to measure surface, and near-surface, elemental concentrations that allow the determination of diffusion rate kinetics. These attributes will be illustrated by assessing diffusion in a thin film couple. Validation data will obtained from traditional techniques: (a) Auger electron spectroscopy (AES), x-ray fluorescence (XRF), and xray photoelectron spectroscopy (XPS).
Materials aging is a high-consequence failure mode in electronic systems. Such mechanisms can degrade the electrical properties of connectors, relays, wire bonds, and other interconnections. Lost performance will impact, not only that of the device, but also the function and reliability of next-level assemblies and the weapons system as a whole. The detections of changes to materials surfaces at the nanometer-scale resolution, provides a means to identify aging processes at their early stages before they manifest into latent failures that affect system-level performance and reliability. Diffusion will be studied on thin films that undergo accelerated aging using the nanometer scale characterization technique of Frequency Modulated Kelvin Probe Force Microscopy (FM-KPFM). The KPFM provides a relatively easy, non-destructive methodology that does not require high-vacuum facilities to obtain nanometer spatial resolution of surface chemistry changes. The KPFM method can provide the means to measure surface, and near-surface, elemental concentrations that allow the determination of diffusion rate kinetics. These attributes will be illustrated by assessing diffusion in a thin film couple. Validation data will obtained from traditional techniques: (a) Auger electron spectroscopy (AES), x-ray fluorescence (XRF), and xray photoelectron spectroscopy (XPS).
Charge-transfer materials based on the self-assembly of aromatic donor–acceptor complexes enable a modular organic-synthetic approach to develop and fine-tune electronic and optical properties, and thus these material systems stand to impact a wide range of technologies. Through laser-induction of temperature gradients, in this paper, user-defined patterning of strongly dichroic and piezoelectric organic thin films composed of donor–acceptor columnar liquid crystals is shown. Finally, fine, reversible control over isotropic versus anisotropic regions in thin films is demonstrated, enabling noncontact writing/rewriting of micropolarizers, bar codes, and charge-transfer based devices.
To quantify the resolution limits of scanning microwave impedance microscopy (sMIM), we created scanning tunneling microscope (STM)-patterned donor nanostructures in silicon composed of 10 nm lines of highly conductive silicon buried under a protective top cap of silicon, and imaged them with sMIM. This dopant pattern is an ideal test of the resolution and sensitivity of the sMIM technique, as it is made with nm-resolution and offers minimal complications from topography convolution. It has been determined that typical sMIM tips can resolve lines down to ∼80 nm spacing, while resolution is independent of tip geometry as extreme tip wear does not change the resolving power, contrary to traditional scanning capacitance microscopy (SCM). Going forward, sMIM is an ideal technique for qualifying buried patterned devices, potentially allowing for quantitative post-fabrication characterization of donor structures, which may be an important tool for the study of atomic-scale transistors and state of the art quantum computation schemes.
We describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.