MPL Cubic Fabrication Seminar
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Carbon
In recent years pyrolysis of interferometrically-patterned photoresists has produced three-dimensionally nanopatterned, electrically conductive carbon films with applications from energy storage to biological sensing. We investigate here conditions for rapid thermal pyrolysis that drastically reduce film processing time (from hours to minutes) while preserving the films' unique nanoscale morphology, film adhesion, and electrochemical properties. We specifically show that heating rate dramatically affects nanoscale morphology, while reducing atmosphere composition, dwell time, and dwell temperature impact the electrochemical performance of these rapidly pyrolyzed nanostructures. Accelerated processing with rapid thermal pyrolysis may facilitate the expanded applicability and rapid fabrication of these promising nanostructured materials. © 2012 Elsevier Ltd. All rights reserved.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The advancement of materials technology towards the development of novel 3D nanostructures for energy applications has been a long-standing challenge. The purpose of this project was to explore photolithographically defineable pyrolyzed photoresist carbon films for possible energy applications. The key attributes that we explored were as follows: (1) Photo-interferometric fabrication methods to produce highly porous (meso, micro, and nano) 3-D electrode structures, and (2) conducting polymer and nanoparticle-modification strategies on these structures to provide enhanced catalytic capabilities and increase conductivity. The resulting electrodes were then explored for specific applications towards possible use in battery and energy platforms.
Abstract not provided.
Advanced Functional Materials
Abstract not provided.