The ability to track nuclear material is a challenge for resiliency of complex systems, e.g., harsh environments. RF tags, frequently used in national security applications, cannot be used for technological, operational, or safety reasons. Magnetic Smart Tags (MaST) is a novel tag technology based on magnetoelastic sensing that circumvents these issues. This technology is enabled by a new, cost-effective, batch manufacturing electrochemical deposition (ECD) process. This new advancement in fabrication enables multi-frequency tags capable of providing millions of possible codes for tag identification unlike existing theft deterrent tags that can convey only a single bit of information. Magnetostrictive 70% Co: 30% Fe was developed as the base alloy comprising the magnetoelastic resonator transduction element. Saturation magnetostriction, λS, has been externally measured by the Naval Research Laboratory to be as high as 78 ppm. Description of a novel MEMS variable capacitive test structure is described for future measurements of this parameter.
Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zones underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.
The development of an electrodeposition process for cobalt/iron (CoFe) alloys with minimal oxygen concentration and controlled stoichiometry is necessary for the advancement of magnetostrictive device functionalities. CoFe alloy films were electrodeposited out of a novel chemistry onto copper test structures enabling magnetic displacement testing for magnetostriction calculations. Using a combination of additives that served as oxygen scavengers, grain refiners, and complexing agents in conjunction with a pulsed plating technique, CoFe films were synthesized at thicknesses as high as 10μm with less than 8 at% oxygen at a stoichiometry of 70-75% Co and 25-30% Fe. X-Ray diffraction (XRD) analysis confirmed that these films had a crystal structure consistent with 70% Co 30% Fe Wairuaite with a slight lattice contraction due to Co doping in the film. A novel characterization technique was used to measure the displacement of the CoFe films electrodeposited, as a function of applied magnetic bias, in order to determine the saturation magnetostriction (λS) of the material. With this chemistry and a tailored pulse plating regime, λS values as high as 172 ± 25ppm have been achieved. This is believed by the authors to be the highest reported value of magnetostriction for an electrodeposited CoFe film.