Sapphire (Al2O3) is a major constituent of the Earth's mantle and has significant contributions to the field of high-pressure physics. Constraining its Hugoniot over a wide pressure range and identifying the location of shock-driven phase transitions allows for development of a multiphase equation of state and enables its use as an impedance-matching standard in shock physics experiments. In this paper we present measurements of the principal Hugoniot and sound velocity from direct impact experiments using magnetically launched flyers on the Z machine at Sandia National Laboratories. The Hugoniot was constrained for pressures from 0.2–2.1 TPa and a four-segment piecewise linear shock-velocity–particle-velocity fit was determined. First-principles molecular dynamics simulations were conducted and agree well with the experimental Hugoniot. Sound-speed measurements identified the onset of melt between 450 and 530 GPa, and the Hugoniot fit refined the onset to 525 ± 13 GPa. A phase diagram which incorporates literature diamond-anvil cell data and melting measurements is presented.
Sapphire (Al2O3) is a major constituent of the Earth's mantle and has significant contributions to the field of high-pressure physics. Constraining its Hugoniot over a wide pressure range and identifying the location of shock-driven phase transitions allows for development of a multiphase equation of state and enables its use as an impedance-matching standard in shock physics experiments. Here, we present measurements of the principal Hugoniot and sound velocity from direct impact experiments using magnetically launched flyers on the Z machine at Sandia National Laboratories. The Hugoniot was constrained for pressures from 0.2-2.1 TPa and a four-segment piecewise linear shock-velocity-particle-velocity fit was determined. First-principles molecular dynamics simulations were conducted and agree well with the experimental Hugoniot. Sound-speed measurements identified the onset of melt between 450 and 530 GPa, and the Hugoniot fit refined the onset to 525±13 GPa. A phase diagram which incorporates literature diamond-anvil cell data and melting measurements is presented.
The high-pressure dynamic response of titanium dioxide (TiO 2) is not only of interest because of its numerous industrial applications but also because of its structural similarities to silica (SiO 2). We performed plate impact experiments in a two-stage light gas gun, at peak stresses from 64 to 221 GPa to determine the TiO 2 response along the Hugoniot. The lower stress experiment at 64 GPa shows an elastic behavior followed by an elastic-plastic transition, whereas the high stress experiments above 64 GPa show a single wave structure. Previous shock studies have shown the presence of high-pressure phases (HPP) I (26 GPa) and HPP II (100 GPa); however, our data suggest that the HPP I phase is stable up to 150 GPa. Using a combination of data from our current study and our previous Z-data, we determine that TiO 2 likely melts on the Hugoniot at 157 GPa. Furthermore, our data confirm that TiO 2 is not highly incompressible as shown by a previous study.
Shock compression experiments on natural compositions are imperative to accurately model planetary accretion and the interior dynamics of planets. Combining shock compression experiments from the Sandia Z Machine and the OMEGA EP laser facility with density functional theory-based molecular dynamics calculations, we report the first pressure-density-temperature (P-ρ-T) relationship of natural iron (Fe)-bearing olivine ((Mg0.91Fe0.09)2SiO4) on the principal Hugoniot between 166 and 1,465 GPa. Additionally, we report the first reflectivities of natural olivine liquid in this pressure range. Compared to the magnesium-endmember forsterite (Mg2SiO4), the presence of Fe in typical mantle abundance (∼9 wt% FeO) alters the US-uP relation of olivine. On the other hand, the shock temperature and reflectivity of olivine are indistinguishable from forsterite where experimental conditions overlap. Both forsterite and olivine increase in reflectivity (and hence optical conductivity) with increasing temperature, with a maximum reflectivity of ∼31% at shock velocities greater than 22 km/s (∼800 GPa).
The physical processes during planet formation span a large range of pressures and temperatures. Giant impacts, such as the one that formed the Moon, achieve peak pressures of 100s of GPa. The peak shock states generate sufficient entropy such that subsequent decompression to low pressures intersects the liquid-vapor phase boundary. The entire shock-and-release thermodynamic path must be calculated accurately in order to predict the post-impact structures of planetary bodies. Forsterite (Mg2SiO4) is a commonly used mineral to represent the mantles of differentiated bodies in hydrocode models of planetary collisions. Here, we performed shock experiments on the Sandia Z Machine to obtain the density and temperature of the liquid branch of the liquid-vapor phase boundary of forsterite. This work is combined with previous work constraining pressure, density, temperature, and entropy of the forsterite principal Hugoniot. We find that the vapor curves in previous forsterite equation of state models used in giant impacts vary substantially from our experimental results, and we compare our results to a recently updated equation of state. We have also found that due to under-predicted entropy production on the principal Hugoniot and elevated temperatures of the liquid vapor phase boundary of these past models, past impact studies may have underestimated vapor production. Furthermore, our results provide experimental support to the idea that giant impacts can transform much of the mantles of rocky planets into supercritical fluids.
The strength of brittle porous media is of concern in numerous applications, for example, earth penetration, crater formation, and blast loading. Thus, it is of importance to possess techniques that allow for constitutive model calibration within the laboratory setting. The goal of the current work is to demonstrate an experimental technique allowing for strength assessment of porous media subjected to shock loading, which can be implemented into pressure-dependent yield surfaces within numerical simulation schemes. As a case study, the deviatoric response of distended α-SiO2 has been captured in a tamped Richtmyer–Meshkov instability (RMI) environment at a pressure regime of 4–10 GPa. Hydrocode simulations were used to interpret RMI experimental data, and a resulting pressure-dependent yield surface akin to the often employed modified Drucker–Prager model was calibrated. Simulations indicate that the resulting jet length generated by the RMI is sensitive to the porous media strength, thereby providing a feasible experimental platform capable of capturing the pressurized granular deviatoric response. Furthermore, in efforts to validate the RMI-calibrated strength model, a set of Mach-lens experiments was performed and simulated with the calibrated pressure-dependent yield surface. Excellent agreement between the resulting Mach-lens length in experiment and simulation provides additional confidence to the RMI yield-surface calibration scheme.
The equation of state (EOS) and shock compression of bulk vanadium were investigated using canonical ab initio molecular dynamic simulations, with experimental validation to 865 GPa from shock data collected at Sandia's Z Pulsed Power Facility. In simulations the phase space was sampled along isotherms ranging from 3000 K to 50000 K, for densities between -ü=3 and 15g/cm3, with a focus on the liquid regime and the body-centered-cubic phase in the vicinity of the melting limit. The principal Hugoniot predicted from first principles is overall consistent with shock data, while it showed that current multiphase SESAME-type EOS for vanadium needed revision in the liquid regime. A more accurate SESAME EOS was developed using constraints from experiments and simulations. This work emphasizes the need to use a combined theoretical and experimental approach to develop high-fidelity EOS models for extreme conditions.
We discuss major challenges in modeling giant impacts between planetary bodies, focusing on the equations of state (EOS). During the giant impact stage of planet formation, rocky planets are melted and partially vaporized. However, most EOS models fail to reproduce experimental constraints on the thermodynamic properties of the major minerals over the required phase space. Here, we present an updated version of the widely-used ANEOS model that includes a user-defined heat capacity limit in the thermal free energy term. Our revised model for forsterite (Mg2SiO4), a common proxy for the mantles of rocky planets, provides a better fit to material data over most of the phase space of giant impacts. We discuss the limitations of this model and the Tillotson equation of state, a commonly used alternative model.
We report the atomic- and nanosecond-scale quantification of kinetics of a shock-driven phase transition in Zr metal. We uniquely make use of a multiple shock-and-release loading pathway to shock Zr into the β phase and to create a quasisteady pressure and temperature state shortly after. Coupling shock loading with in situ time-resolved synchrotron x-ray diffraction, we probe the structural transformation of Zr in the steady state. Our results provide a quantified expression of kinetics of formation of β-Zr phase under shock loading: transition incubation time, completion time, and crystallization rate.
The high-pressure response of titanium dioxide (TiO2) is of interest because of its numerous industrial applications and its structural similarities to silica (SiO2). We used three platforms - Sandia's Z machine, Omega Laser Facility, and density-functional theory-based quantum molecular dynamics (QMD) simulations - to study the equation of state (EOS) of TiO2 at extreme conditions. We used magnetically accelerated flyer plates at Sandia to measure Hugoniot of TiO2 up to pressures of 855 GPa. We used a laser-driven shock wave at Omega to measure the shock temperature in TiO2. Our Z data show that rutile TiO2 reaches 2.2-fold compression at a pressure of 855 GPa and Omega data show that TiO2 is a reflecting liquid above 230 GPa. The QMD simulations are in excellent agreement with the experimental Hugoniot in both pressure and temperature. A melt curve for TiO2 is also proposed based on the QMD simulations. The combined experimental results show TiO2 is in a liquid at these explored pressure ranges and is not highly incompressible as suggested by a previous study.
In this work we provide direct evidence of shock-induced melting and associated kinetics in a porous solid (aluminum powder) using time-resolved x-ray diffraction. Unambiguous evidence of melting in 50% porous aluminum (Al) powder samples, shocked to peak pressures between ∼13-19GPa, was provided by the broadening of the Debye-Scherrer ring corresponding to the (111) peak. Shocked Al powder did not melt completely in any of our experiments within the durations of measurement. Incomplete (partial) melting of the powder, even after several hundreds of nanoseconds of shock loading, provides insights into thermal transport with Al powder particles under high-pressure dynamic loading. Such insights are quite valuable for developing well-constrained melting models and thermodynamic equations of state for porous Al and other porous solids relevant to planetary and materials science.
Collisions that induce melting and vaporization can have a substantial effect on the thermal and geochemical evolution of planets. However, the thermodynamics of major minerals are not well known at the extreme conditions attained during planet formation. We obtained new data at the Sandia Z Machine and use published thermodynamic data for the major mineral forsterite (Mg2SiO4) to calculate the specific entropy in the liquid region of the principal Hugoniot. We use our calculated specific entropy of shocked forsterite, and revised entropies for shocked silica, to determine the critical impact velocities for melting or vaporization upon decompression from the shocked state to 1 bar and the triple points, which are near the pressures of the solar nebula. We also demonstrate the importance of the initial temperature on the criteria for vaporization. Applying these results to N-body simulations of terrestrial planet formation, we find that up to 20% to 40% of the total system mass is processed through collisions with velocities that exceed the criteria for incipient vaporization at the triple point. Vaporizing collisions between small bodies are an important component of terrestrial planet formation.
The properties of silica (SiO 2) at extreme conditions have important applications for planetary processes and for high pressure research. We report the results of 125 plate impact shock compression experiments on fused silica spanning 200-1100 GPa using the Z machine at Sandia National Laboratories. Additionally, we present a complementary set of density functional theory based molecular dynamics calculations based on an amorphous reference state that extend the Hugoniot to 2500 GPa. We find good agreement between the Z data, extant laser driven shock compression experiment data, and computational results over most of the pressure range. With these results, fused silica can be used as a new impedance matching standard for shock compression experiments.
The strength of brittle porous media is of concern in numerous applications, for example, earth penetration, crater formation, and blast loading; thus it is of importance to possess techniques that allow for constitutive model calibration within the laboratory setting. It is the goal of the immediate work to demonstrate an experimental technique allowing for strength assessment, which can be implemented into pressure dependent yield surfaces within numerical simulation schemes. As a case study, the deviatoric strength of distended α-SiO2 has been captured in a tamped Richtmyer- Meshkov instability environment at a pressure regime of 4-10 GPa. In contrast to traditional RMI studies used to infer strength in solids, the described approach herein is implemented to probe the behavior of the porous tamp media backing the corrugated solid surface. Hydrocode simulation has been used to interpret the experiment, and a resulting pressure-dependent yield surface akin to the often employed Modified Drucker-Prager model has been calibrated via the coupled experiment and simulation. The simulations indicate that the resulting jet length generated by the RMI is highly sensitive to the porous media strength, thereby providing a feasible experimental platform capable of capturing pressurized granular deviatoric response. Additionally, a Mach lens loading environment has also been implemented as a validation case study, demonstrating good agreement between experiment and simulation within an alternative loading environment. Calibration and validation of the pressure-dependent yield surface gives confidence to the model form, thereby providing a framework for future porous media strength studies.
Forsterite (Mg2SiO4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate-impact steady shocks and laser-driven decaying shock compression experiments. Additionally, we performed density functional theory-based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg2SiO4 and an assemblage of solid MgO plus liquid magnesium silicate. The measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electrical conductor at low pressures and that the conductivity increases with pressure.
The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ=2.5 to 20g/cm3. The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-Type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.
We report real-time observations of a phase transition in the ionic solid CaF2, a model AB2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurements of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. Combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.
In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.
The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth's mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories' Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42 000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. The high pressure required for complete shock melting has implications for a broad range of planetary collision events.
Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. The DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.
We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Finally, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.
Planar shock experiments were conducted on granular tungsten carbide (WC) and tantalum oxide (Ta{sub 2}O{sub 5}) using the Z machine and a 2-stage gas gun. Additional shock experiments were also conducted on a nearly fully dense form of Ta{sub 2}O{sub 5}. The experiments on WC yield some of the highest pressure results for granular materials obtained to date. Because of the high distention of Ta{sub 2}O{sub 5}, the pressures obtained were significantly lower, but the very high temperatures generated led to large contributions of thermal energy to the material response. These experiments demonstrate that the Z machine can be used to obtain accurate shock data on granular materials. The data on Ta{sub 2}O{sub 5} were utilized in making improvements to the P-{lambda} model for high pressures; the model is found to capture the results not only of the Z and gas gun experiments but also those from laser experiments on low density aerogels. The results are also used to illustrate an approach for generating an equation of state using only the limited data coming from nanoindentation. Although the EOS generated in this manner is rather simplistic, for this material it gives reasonably good results.
Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.
The noble gas xenon is a particularly interesting element. At standard pressure xenon is an fcc solid which melts at 161 K and then boils at 165 K, thus displaying a rather narrow liquid range on the phase diagram. On the other hand, under pressure the melting point is significantly higher: 3000 K at 30 GPa. Under shock compression, electronic excitations become important at 40 GPa. Finally, xenon forms stable molecules with fluorine (XeF{sub 2}) suggesting that the electronic structure is significantly more complex than expected for a noble gas. With these reasons in mind, we studied the xenon Hugoniot using DFT/QMD and validated the simulations with multi-Mbar shock compression experiments. The results show that existing equation of state models lack fidelity and so we developed a wide-range free-energy based equation of state using experimental data and results from first-principles simulations.