In this report we describe the testing of a novel scheme for state preparation of trapped ions in a quantum computing setup. This technique optimally would allow for similar precision and speed of state preparation while allowing for individual addressability of single ions in a chain using technology already available in a trapped ion experiment. As quantum computing experiments become more complicated, mid-experiment measurements will become necessary to achieve algorithms such as quantum error correction. Any mid-experiment measurement then requires the measured qubit to be re-prepared to a known quantum state. Currently this involves the protected qubits to be moved a sizeable distance away from the qubit being re-prepared which can be costly in terms of experiment length as well as introducing errors. Theoretical calculations predict that a three-photon process would allow for state preparation without qubit movement with similar efficiencies to current state preparation methods.
We demonstrate an optical waveguide device capable of supporting the optical power necessary for trapping a single atom or a cold-atom ensemble with evanescent fields. Our photonic integrated platform successfully manages optical powers of ~30mW.
We report on the characterization of heating rates and photoinduced electric charging on a microfabricated surface ion trap with integrated waveguides. Microfabricated surface ion traps have received considerable attention as a quantum information platform due to their scalability and manufacturability. Here, we characterize the delivery of 435-nm light through waveguides and diffractive couplers to a single ytterbium ion in a compact trap. We measure an axial heating rate at room temperature of 0.78±0.05 q/ms and see no increase due to the presence of the waveguide. Furthermore, the electric field due to charging of the exposed dielectric outcoupler settles under normal operation after an initial shift. The frequency instability after settling is measured to be 0.9 kHz.
We demonstrate an optical waveguide device, capable of supporting the high, invacuum, optical power necessary for trapping a single atom or a cold atom ensemble with evanescent fields. Our photonic integrated platform, with suspended membrane waveguides, successfully manages optical powers of 6 mW (500 μm span) to nearly 30 mW (125 μm span) over an un-tethered waveguide span. This platform is compatible with laser cooling and magnetooptical traps (MOTs) in the vicinity of the suspended waveguide, called the membrane MOT and the needle MOT, a key ingredient for efficient trap loading. We evaluate two novel designs that explore critical thermal management features that enable this large power handling. This work represents a significant step toward an integrated platform for coupling neutral atom quantum systems to photonic and electronic integrated circuits on silicon.
Passive silicon photonic waveguides are exposed to gamma radiation to understand how the performance of silicon photonic integrated circuits is affected in harsh environments such as space or high energy physics experiments. The propagation loss and group index of the mode guided by these waveguides is characterized by implementing a phase sensitive swept-wavelength interferometric method. We find that the propagation loss associated with each waveguide geometry explored in this study slightly increases at absorbed doses of up to 100 krad (Si). The measured change in group index associated with the same waveguide geometries is negligibly changed after exposure. Additionally, we show that the post-exposure degradation of these waveguides can be improved through heat treatment.
We demonstrate the ultrahigh extinction operation of a silicon photonic (SiP) amplitude modulator (AM) employing a cascaded Mach-Zehnder interferometer. By carrying out optimization sweeps without significantly degrading the extinction, the SiP AM is robust to environment changes and maintained >52 dB extinction for >6 hrs.
Measurement uncertainties in the techniques used to characterize loss in photonic waveguides becomes a significant issue as waveguide loss is reduced through improved fabrication technology. Typical loss measurement techniques involve environmentally unknown parameters such as facet reflectivity or varying coupling efficiencies, which directly contribute to the uncertainty of the measurement. We present a loss measurement technique, which takes advantage of the differential loss between multiple paths in an arrayed waveguide structure, in which we are able to gather statistics on propagation loss from several waveguides in a single measurement. This arrayed waveguide structure is characterized using a swept-wavelength interferometer, enabling the analysis of the arrayed waveguide transmission as a function of group delay between waveguides. Loss extraction is only dependent on the differential path length between arrayed waveguides and is therefore extracted independently from on and off-chip coupling efficiencies, which proves to be an accurate and reliable method of loss characterization. This method is applied to characterize the loss of the silicon photonic platform at Sandia Labs with an uncertainty of less than 0.06 dB/cm.
We report on thermally tunable modulators, with efficiencies up to 2.16 nm/mW. Efficient performance was accomplished through integrated heater design and Si substrate removal, where the heavily N+ doped Si heater element is integrated into the body of the microdisk. For comparison, modulators with an external heater design were also tested with small diameter Si substrate removed. The external heavily doped N+Si heater bars were fabricated outside the diameter of the microdisk. Efficiency for external heater design was 0.68 nm/mW with substrate removed. Both types of thermal modulators were experimentally tested and simulated for a complete understanding of the Si substrate's influence on heat dissipation with both types benefiting significantly from substrate removal. Agreement between simulation and experimental results was greater than 80% in all instances.
Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.
An 11-channel 1-GHz bandwidth silicon photonic AWG was fabricated and measured in the lab. Two photonic architectures are presented: (1) RF-envelope detector, and (2) RF downconvertor for digital systems. The RF-envelope detector architecture was modeled based on the demonstrated AWG characteristics to determine estimated system-level RF receiver performance.
Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabrication layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.
We present our experimental results of ultra efficient (up to 2.16 nm/mW) thermally tunable modulators with n-Type heaters and the Si substrate removed. To our knowledge, this is the most efficient thermally tunable modulator demonstrated at 1550nm to date. We include results of externally heated modulators with commensurate performance enhancements through substrate removal.
We present a quantitative analysis of the correlation of resonant wavelength variation with process variables, and find that 50% of the resonant wavelength variation for microrings is due to systematic process conditions. We also discuss the improvement of device uniformity by mitigating these systematic variations.
We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.
We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480-1640 nm and 95 nm from 1280-1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.
Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.
We experimentally demonstrate amplitude modulators (AMs) with >65 dB extinction across over a 160 nm spectral range. The output optical phase response is also characterized when the amplitude is modulated.
We demonstrate a silicon photonic transceiver circuit to implement polarization encoding/decoding for DV-QKD. The circuit is capable of encoding BB84 states with >30 dB PER and decoding with >20 dB ER.
A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.
We describe the challenge of implementing optical interconnect for beyond Moore's electronic devices. In particular, we developed a simple link model and calculated the optical communications energy for logic voltages down to 10 mV. The results of this link model show a limit to the minimum communications energy that depends on the achievable extinction ratio of the devices. This work gives some insight into the tact that should be taken for improved optical devices to have an impact in future computing systems using ultra-low voltage transistor devices.
Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.
We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.
We demonstrate an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic mode, and diabatic for the transverse electric mode. The PBS has a simple structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.
We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.
Small silicon photonics micro-resonator modulators and filters hold the promise for multi-terabit per-second interconnects at energy consumptions well below 1 pJ/bit. To date, no products exist and little known commercial development is occurring using this technology. Why? In this talk, we review the many challenges that remain to be overcome in bringing this technology from the research labs to the field where they can overcome important commercial, industrial, and national security limitations of existing photonic technologies.
This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. Furthermore, the work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.
We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.