Calibration Method for Current Monitors on a High Current Pulsed-Power Accelerator
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE International Pulsed Power Conference
Vulcan is a new pulsed power system at Sandia National Laboratories based on fast Marx technology. Vulcan will serve as an intermediate scale demonstration of a fast Marx system and as a testbed for vacuum insulator testing. Vulcan uses multiple parallel fast Marxes, in a layout we call a Fast Marx Array (FMA), and a pulse forming line (PFL) to generate pulses up to 5 MV with effective pulse lengths for vacuum insulator testing that are relevant to larger facilities like Z. Vulcan consists of two parallel 25 stage Marxes with a total stored energy of up to 20 kJ. Vulcan applies up to 5 MV to a vacuum insulator stack load, thereby enabling testing of large area insulator stacks with areas on the order of 1000 cm2. The PFL design includes an oil output switch to adjust the voltage stress duration applied to the vacuum insulator. We will discuss Vulcan's design, including the FMA, Marx trigger generator, energy diverter, PFL, oil output switch, and results of initial commissioning experiments.
Abstract not provided.
Plasma formation from intensely ohmically heated conductors is known to be highly non-uniform, as local overheating can be driven by micron-scale imperfections. Detailed understanding of plasma formation is required to predict the performance of magnetically driven physics targets and magnetically-insulated transmission lines (MITLs). Previous LDRD-supported work (projects 178661 and 200269) developed the electrothermal instability (ETI) platform, on the Mykonos facility, to gather high-resolution images of the self-emission from the non-uniform ohmic heating of z-pinch rods. Experiments studying highly inhomogeneous alloyed aluminum captured complex heating topography. To enable detailed comparison with magnetohydrodynamic (MHD) simulation, 99.999% pure aluminum rods in a z-pinch configuration were diamond-turned to ~10nm surface roughness and then further machined to include well-characterized micron-scale "engineered" defects (ED) on the rod's surface (T.J. Awe, et al., Phys. Plasmas 28, 072104 (2021)). In this project, the engineered defect hardware and diagnostic platform were used to study ETI evolution and non-uniform plasma formation from stainless steel targets. The experimental objective was to clearly determine what, if any, role manufacturing, preparation, or alloy differences have in encouraging nonuniform heating and plasma formation from high-current density stainless steel. Data may identify improvements that may be implemented in the fabrication/preparation of electrodes used on the Z machine. Preliminary data shows that difference in manufacturer has no observed effect on ETI evolution, stainless alloy 304L heated more uniformly than alloy 310 at similar current densities, and that stainless steel undergoes the same evolutionary ETI stages as ultra-pure aluminum, with increased emission tied to areas of elevated surface roughness.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Auto-magnetizing (AutoMag) liners are cylindrical tubes composed of discrete metallic helices encapsulated in insulating material; when driven with a ∼2 MA, ∼100-ns prepulse on the 20 MA, 100-ns rise time Z accelerator, AutoMag targets produced >150 T internal axial magnetic fields [Shipley et al., Phys. Plasmas 26, 052705 (2019)]. Once the current rise rate of the pulsed power driver reaches sufficient magnitude, the induced electric fields in the liner cause dielectric breakdown of the insulator material and, with sufficient current, the cylindrical target radially implodes. The dielectric breakdown process of the insulating material in AutoMag liners has been studied in experiments on the 500-900 kA, ∼100-ns rise time Mykonos accelerator. Multi-frame gated imaging enabled the first time-resolved observations of photoemission from dynamically evolving plasma distributions during the breakdown process in AutoMag targets. Using magnetohydrodynamic simulations, we calculate the induced electric field distribution and provide a detailed comparison to the experimental data. We find that breakdown in AutoMag targets does not primarily depend on the induced electric field in the gaps between conductive helices as previously thought. Finally, to better control the dielectric breakdown time, a 12-32 mJ, 170 ps ultraviolet (λ = 266 nm) laser was implemented to irradiate the outer surface of AutoMag targets to promote breakdown in a controlled manner at a lower internal axial field. The laser had an observable effect on the time of breakdown and subsequent plasma evolution, indicating that pulsed UV lasers can be used to control breakdown timing in AutoMag.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Z Machine at Sandia National Laboratories uses current pulses with peaks up to 27 MA to drive target implosions and generate high energy density conditions of interest for stockpile stewardship programs pertinent to the NNSA program portfolio . Physical processes in the region near the Z Machine target create electrode plasmas which seed parasitic current loss that reduce the performance and output of a Z experiment. Electrode surface contaminants (hydrogen, water, hydrocarbons) are thought to be the primary constituent of electrode plasmas which contribute to loss mechanisms. The Sandia team explore d in situ heating and plasma discharge techniques by integrating requisite infrastructure into Sandia's Mykonos LTD accelerator, addressing potential impacts to accelerator operation, and reporting on the impact of these techniques on electrode plasma formation and shot performance. The in situ discharge cleaning utilizes the electrodes of the accelerator to excite an argon-oxygen plasma to sputter and chemically react contaminants from electrode surfaces. Insulating breaks are required to isolate the plasma in electrode regions where loss processes are most likely to occur. The shots on Mykonos validate that these breaks do not perturb experiment performance, reducing the uncertainty on the largest unknown about the in situ cleaning system. Preliminary observations with electrical and optical diagnostics suggest that electrode plasma formation is delayed, and overall inventory has been substantively reduced. In situ heating embeds cartridge heaters into accelerator electrodes and employs a thermal bakeout to rapidly desorb contaminants from electrode surfaces. For the first time, additively manufactured (AM) electrode assemblies were used on a low impedance accelerator to integrate cooling channels and manage thermal gradients. Challenges with poor supplier fabrication to specifications, load alignment, thermal expansion and hardware movement and warpage appears to have introduced large variability in observed loss, though, preventing strong assertions of loss reduction via in situ heating. At this time, an in situ discharge cleaning process offers the lowest risk path to reduce electrode contaminant inventories on Z, though we recommend continuing to develop both approaches. Additional engineering and testing are required to improve the implementation of both systems. .
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Experimental validation data is needed to inform simulations of large pulsed power devices which are in development to understand and improve existing accelerators and inform future pulsed power capabilities. Using current spectroscopic techniques on the Z-machine, we have been unable to reliably diagnose plasma conditions and electric and magnetic fields within power flow regions. Laser ablation of a material produces a low density plasma, resulting in narrow spectroscopic line widths. By introducing a laser ablated plasma to the anode cathode gap of the Mykonos accelerator, we can monitor how the line shapes change due the current pulse by comparing these line shapes to spectral measurements taken without power flow. In this report we show several examples of measurements conducted on Mykonos on various dopant materials. We also show a negligible effect on power flow due to the presence of the ablation plasma for a range of parameters.
Penetrating X-rays are one of the most effective tools for diagnosing high energy density experiments, whether through radiographic imaging or X-ray diffraction. To expand the X-ray diagnostic capabilities at the 26-MA Z Pulsed Power Facility, we have developed a new diagnostic X-ray source called the inductively driven X-pinch (IDXP). This X-ray source is powered by a miniature transmission line that is inductively coupled to fringe magnetic fields in the final power feed. The transmission line redirects a small amount of Zs magnetic energy into a secondary cavity where 150+ kA of current is delivered to a hybrid X-pinch. In this report, we describe the multi-stage development of the IDXP concept through experiments both on Z and in a surrogate setup on the 1 MA Mykonos facility. Initial short-circuit experiments to verify power ow on Z are followed by short-circuit and X-ray source development experiments on Mykonos. The creation of a radiography-quality X-pinch hot spot is verified through a combination of X-ray diode traces, laser shadowgraphy, and source radiography. The success of the IDXP experiments on Mykonos has resulted in the design and fabrication of an IDXP for an upcoming Z experiment that will be the first-ever X-pinch fielded on Z. We have also pursued the development of two additional technologies. First, the extended convolute post (XCP) has been developed as an alternate method for powering diagnostic X-pinches on Z. This concept, which directly couples the current owing in one of the twelve Z convolute posts to an X-pinch, greatly increases the amount of available current relative to an IDXP (900 kA versus 150 kA). Initial short-circuit XCP experiments have demonstrated the efficacy of power ow in this geometry. The second technology pursued here is the inductively driven transmission line (IDTL) current monitor. These low-current IDTLs seek to measure the current in the final power feed with high fidelity. After three generations of development, IDTL current monitors frequently return cleaner current measurements than the standard B-dot sensors that are fielded on Z. This is especially true on high-inductance experiments where the harshest conditions are created in the nal power feed.
Physical Review Accelerators and Beams
Two-dimensional electromagnetic (EM) particle-in-cell (PIC) simulations of a radial magnetically-insulated-transmission-line are presented and compared to the model of E. M. Waisman, M. P. Desjarlais, and M. E. Cuneo [Phys. Rev. Accel. Beams 22, 030402 (2019) in the “high-enhancement” (WDC-HE) limit. The simulations use quasi-equilibrium current and voltage values based on the Sandia National Laboratories Z accelerator, with prescribed injection of an electron sheath that gives electron density profiles qualitatively similar to those used in the WDC-HE model. We find that the WDC-HE model accurately predicts the quasiequilibrium ion current losses in the EM PIC simulations for a wide range of current and voltage values. For the case of two ion species where one is magnetically insulated by the ambient magnetic field and the other is not, the charge of the lighter insulated species in the anode-cathode gap can modify the electric field profile, reducing the ion current density enhancement for the heavier ion species. On the other hand, for multiple ion species, when the lighter ions are not magnetically insulated and are a significant fraction of the anode plasma, they dominate the current loss, producing loss currents which are a significant fraction of the lighter ion WDC values. The observation of this effect in the present work is new to the field and may significantly impact the analysis of ion current losses in the Z machine inner MITL and convolute.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Accelerators and Beams
Interest in studying power flow dynamics has grown in recent years, with new power flow diagnostics being developed at Sandia National Laboratories for the Z Pulsed Power Facility. Presently, the only power flow loads that have been studied are cylindrical static or imploding loads that are driven by synchronous short pulse (100 ns rise time). Presented is a design that utilizes the dynamic materials properties program's stripline geometry in a high voltage pulsed shaped (asymmetric asynchronous) driving mode. This design has exhibited repeatable current loss with a large time-varying inductance that is well matched to the machine at pulse initialization but which triples to high inductance in 800 ns. Evidence is presented that plasma not captured in the magnetohydrodynamic approximation and ill represented by any of our existing predictive pulsed power codes is adversely affecting load current delivery. The authors believe this design could be of great interest to the experimental and modeling communities for studying power flow dynamics.
Abstract not provided.
Abstract not provided.
Abstract not provided.