Publications

Results 1201–1300 of 9,998

Search results

Jump to search filters

Pulsed power accelerator surface Joule heating models

Physics of Plasmas

Robinson, Allen C.; Porwitzky, Andrew J.

Understanding the effects of contaminant plasmas generated within the Z machine at Sandia is critical to understanding current loss mechanisms. The plasmas are generated at the accelerator electrode surfaces and include desorbed species found in the surface and substrate of the walls. These desorbed species can become ionized. The timing and location of contaminant species desorbed from the wall surface depend non-linearly on the local surface temperature. For accurate modeling, it is necessary to utilize wall heating models to estimate the amount and timing of material desorption. One of these heating mechanisms is Joule heating. We propose several extended semi-analytic magnetic diffusion heating models for computing surface Joule heating and demonstrate their effects for several representative current histories. We quantitatively assess under what circumstances these extensions to classical formulas may provide a validatable improvement to the understanding of contaminant desorption timing.

More Details

PreFAM: Understanding the Impact of Prefetching in Fabric-Attached Memory Architectures

ACM International Conference Proceeding Series

Kommareddy, Vamsee R.; Hughes, Clayton H.; Hammond, Simon D.; Awad, Amro

With many recent advances in interconnect technologies and memory interfaces, disaggregated memory systems are approaching industrial adoption. For instance, the recent Gen-Z consortium focuses on a new memory semantic protocol that enables fabric-attached memories (FAM), where the memory and other compute units can be directly attached to fabric interconnects. Decoupling of memory from compute units becomes a feasible option as the rate of data transfer increases due to the emergence of novel interconnect technologies, such as Silicon Photonic Interconnects. Disaggregated memories not only enable more efficient use of capacity (minimizes under-utilization) they also allow easy integration of evolving technologies. Additionally, they simplify the programming model at the same time allowing efficient sharing of data. However, the latency of accessing the data in these Fabric Attached disaggregated Memories (FAMs) is dependent on the latency imposed by the fabric interfaces. To reduce memory access latency and to improve the performance of FAM systems, in this paper, we explore techniques to prefetch data from FAMs to the local memory present in the node (PreFAM). We realize that since the memory access latency is high in FAMs, prefetching a cache block (64 bytes) from FAM can be inefficient, since the possibility of issuing demand requests before the completion of prefetch requests, to the same FAM locations, is high. Hence, we explore predicting and prefetching FAM blocks at a distance; prefetching blocks which are going to be accessed in future but not immediately. We show that, with prefetching, the performance of FAM architectures increases by 38.84%, while memory access latency is improved by 39.6%, with only 17.65% increase in the number of accesses to the FAM, on average. Further, by prefetching at a distance we show a performance improvement of 72.23%.

More Details

Physics-informed graph neural network for circuit compact model development

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Gao, Xujiao G.; Huang, Andy H.; Trask, Nathaniel A.; Reza, Shahed R.

We present a Physics-Informed Graph Neural Network (pigNN) methodology for rapid and automated compact model development. It brings together the inherent strengths of data-driven machine learning, high-fidelity physics in TCAD simulations, and knowledge contained in existing compact models. In this work, we focus on developing a neural network (NN) based compact model for a non-ideal PN diode that represents one nonlinear edge in a pigNN graph. This model accurately captures the smooth transition between the exponential and quasi-linear response regions. By learning voltage dependent non-ideality factor using NN and employing an inverse response function in the NN loss function, the model also accurately captures the voltage dependent recombination effect. This NN compact model serves as basis model for a PN diode that can be a single device or represent an isolated diode in a complex device determined by topological data analysis (TDA) methods. The pigNN methodology is also applicable to derive reduced order models in other engineering areas.

More Details

Modeling assisted room temperature operation of atomic precision advanced manufacturing devices

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Gao, Xujiao G.; Tracy, Lisa A.; Anderson, Evan M.; Campbell, DeAnna M.; Ivie, Jeffrey A.; Lu, Tzu-Ming L.; Mamaluy, Denis M.; Schmucker, Scott W.; Misra, Shashank M.

One big challenge of the emerging atomic precision advanced manufacturing (APAM) technology for microelectronics application is to realize APAM devices that operate at room temperature (RT). We demonstrate that semiclassical technology computer aided design (TCAD) device simulation tool can be employed to understand current leakage and improve APAM device design for RT operation. To establish the applicability of semiclassical simulation, we first show that a semiclassical impurity scattering model with the Fermi-Dirac statistics can explain the very low mobility in APAM devices quite well; we also show semiclassical TCAD reproduces measured sheet resistances when proper mobility values are used. We then apply semiclassical TCAD to simulate current leakage in realistic APAM wires. With insights from modeling, we were able to improve device design, fabricate Hall bars, and demonstrate RT operation for the very first time.

More Details

Quantum transport in Si:P δ-layer wires

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Mendez Granado, Juan P.; Mamaluy, Denis M.; Gao, Xujiao G.; Anderson, Evan M.; Campbell, DeAnna M.; Ivie, Jeffrey A.; Lu, Tzu-Ming L.; Schmucker, Scott W.; Misra, Shashank M.

We employ a fully charge self-consistent quantum transport formalism, together with a heuristic elastic scattering model, to study the local density of state (LDOS) and the conductive properties of Si:P δ-layer wires at the cryogenic temperature of 4 K. The simulations allow us to explain the origin of shallow conducting sub-bands, recently observed in high resolution angle-resolved photoemission spectroscopy experiments. Our LDOS analysis shows the free electrons are spatially separated in layers with different average kinetic energies, which, along with elastic scattering, must be accounted for to reproduce the sheet resistance values obtained over a wide range of the δ-layer donor densities.

More Details

SparTen: Leveraging Kokkos for On-node Parallelism in a Second-Order Method for Fitting Canonical Polyadic Tensor Models to Poisson Data

2020 IEEE High Performance Extreme Computing Conference, HPEC 2020

Teranishi, Keita T.; Dunlavy, Daniel D.; Myers, Jeremy M.; Barrett, Richard F.

Canonical Polyadic tensor decomposition using alternate Poisson regression (CP-APR) is an effective analysis tool for large sparse count datasets. One of the variants using projected damped Newton optimization for row subproblems (PDNR) offers quadratic convergence and is amenable to parallelization. Despite its potential effectiveness, PDNR performance on modern high performance computing (HPC) systems is not well understood. To remedy this, we have developed a parallel implementation of PDNR using Kokkos, a performance portable parallel programming framework supporting efficient runtime of a single code base on multiple HPC systems. We demonstrate that the performance of parallel PDNR can be poor if load imbalance associated with the irregular distribution of nonzero entries in the tensor data is not addressed. Preliminary results using tensors from the FROSTT data set indicate that using multiple kernels to address this imbalance when solving the PDNR row subproblems in parallel can improve performance, with up to 80% speedup on CPUs and 10-fold speedup on NVIDIA GPUs.

More Details

Parameter Sensitivity Analysis of the SparTen High Performance Sparse Tensor Decomposition Software

2020 IEEE High Performance Extreme Computing Conference, HPEC 2020

Myers, Jeremy M.; Dunlavy, Daniel D.; Teranishi, Keita T.; Hollman, David S.

Tensor decomposition models play an increasingly important role in modern data science applications. One problem of particular interest is fitting a low-rank Canonical Polyadic (CP) tensor decomposition model when the tensor has sparse structure and the tensor elements are nonnegative count data. SparTen is a high-performance C++ library which computes a low-rank decomposition using different solvers: a first-order quasi-Newton or a second-order damped Newton method, along with the appropriate choice of runtime parameters. Since default parameters in SparTen are tuned to experimental results in prior published work on a single real-world dataset conducted using MATLAB implementations of these methods, it remains unclear if the parameter defaults in SparTen are appropriate for general tensor data. Furthermore, it is unknown how sensitive algorithm convergence is to changes in the input parameter values. This report addresses these unresolved issues with large-scale experimentation on three benchmark tensor data sets. Experiments were conducted on several different CPU architectures and replicated with many initial states to establish generalized profiles of algorithm convergence behavior.

More Details

Granular packings with sliding, rolling, and twisting friction

Physical Review E

Santos, Andrew P.; Bolintineanu, Dan S.; Grest, Gary S.; Lechman, Jeremy B.; Plimpton, Steven J.; Srivastava, Ishan; Silbert, Leonardo E.

Intuition tells us that a rolling or spinning sphere will eventually stop due to the presence of friction and other dissipative interactions. The resistance to rolling and spinning or twisting torque that stops a sphere also changes the microstructure of a granular packing of frictional spheres by increasing the number of constraints on the degrees of freedom of motion. We perform discrete element modeling simulations to construct sphere packings implementing a range of frictional constraints under a pressure-controlled protocol. Mechanically stable packings are achievable at volume fractions and average coordination numbers as low as 0.53 and 2.5, respectively, when the particles experience high resistance to sliding, rolling, and twisting. Only when the particle model includes rolling and twisting friction were experimental volume fractions reproduced.

More Details

Risk-averse optimal control of semilinear elliptic PDEs

ESAIM: Control, Optimisation and Calculus of Variations

Kouri, Drew P.; Surowiec, Thomas

In this paper, we consider the optimal control of semilinear elliptic PDEs with random inputs. These problems are often nonconvex, infinite-dimensional stochastic optimization problems for which we employ risk measures to quantify the implicit uncertainty in the objective function. In contrast to previous works in uncertainty quantification and stochastic optimization, we provide a rigorous mathematical analysis demonstrating higher solution regularity (in stochastic state space), continuity and differentiability of the control-to-state map, and existence, regularity and continuity properties of the control-to-adjoint map. Our proofs make use of existing techniques from PDE-constrained optimization as well as concepts from the theory of measurable multifunctions. We illustrate our theoretical results with two numerical examples motivated by the optimal doping of semiconductor devices.

More Details

LDMS-GPU: Lightweight Distributed Metric Service (LDMS) for NVIDIA GPGPUs

Elwazir, Ammar; Badawy, Abdel-Hameed A.; Aaziz, Omar R.; Cook, Jeanine C.

GPUs are now a fundamental accelerator for many high-performance computing applications. They are viewed by many as a technology facilitator for the surge in fields like machine learning and Convolutional Neural Networks. To deliver the best performance on a GPU, we need to create monitoring tools to ensure that we optimize the code to get the most performance and efficiency out of a GPU. Since NVIDIA GPUs are currently the most commonly implemented in HPC applications and systems, NVIDIA tools are the solution for performance monitoring. The Light-Weight Distributed Metric System (LDMS) at Sandia is an infrastructure widely adopted for large-scale systems and application monitoring. Sandia has developed CPU application monitoring capability within LDMS. Therefore, we chose to develop a GPU monitoring capability within the same framework. In this report, we discuss the current limitations in the NVIDIA monitoring tools, how we overcame such limitations, and present an overview of the tool we built to monitor GPU performance in LDMS and its capabilities. Also, we discuss our current validation results. Most of the performance counter results are the same in both vendor tools and our tool when using LDMS to collect these results. Furthermore, our tool provides these statistics during the entire runtime of the tool as a time series and not just aggregate statistics at the end of the application run. This allows the user to see the progress of the behavior of the applications during their lifetime.

More Details

The deal.II library, Version 9.2

Journal of Numerical Mathematics

Arndt, Daniel; Bangerth, Wolfgang; Blais, Bruno; Clevenger, Thomas C.; Fehling, Marc; Heister, Timo; Heltai, Luca; Maier, Matthias; Munch, Peter; Pelteret, Jean P.; Rastak, Reza; Tomas, Ignacio T.; Turcksin, Bruno; Wang, Zhuoran; Wells, David

This paper provides an overview of the new features of the finite element library deal.II, version 9.2.

More Details

On mixed-integer programming formulations for the unit commitment problem

INFORMS Journal on Computing

Knueven, Ben; Ostrowski, James; Watson, Jean-Paul W.

We provide a comprehensive overview of mixed-integer programming formulations for the unit commitment (UC) problem. UC formulations have been an especially active area of research over the past 12 years due to their practical importance in power grid operations, and this paper serves as a capstone for this line of work. We additionally provide publicly available reference implementations of all formulations examined. We computationally test existing and novel UC formulations on a suite of instances drawn from both academic and real-world data sources. Driven by our computational experience from this and previous work, we contribute some additional formulations for both generator production upper bounds and piecewise linear production costs. By composing new UC formulations using existing components found in the literature and new components introduced in this paper, we demonstrate that performance can be significantly improved—and in the process, we identify a new state-of-the-art UC formulation.

More Details

Analog architectures for neural network acceleration based on non-volatile memory

Applied Physics Reviews

Xiao, Tianyao X.; Bennett, Christopher H.; Feinberg, Benjamin F.; Agarwal, Sapan A.; Marinella, Matthew J.

Analog hardware accelerators, which perform computation within a dense memory array, have the potential to overcome the major bottlenecks faced by digital hardware for data-heavy workloads such as deep learning. Exploiting the intrinsic computational advantages of memory arrays, however, has proven to be challenging principally due to the overhead imposed by the peripheral circuitry and due to the non-ideal properties of memory devices that play the role of the synapse. We review the existing implementations of these accelerators for deep supervised learning, organizing our discussion around the different levels of the accelerator design hierarchy, with an emphasis on circuits and architecture. We explore and consolidate the various approaches that have been proposed to address the critical challenges faced by analog accelerators, for both neural network inference and training, and highlight the key design trade-offs underlying these techniques.

More Details

Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry

Journal of Materials Research

Katzenmeyer, Aaron M.; Luk, Ting S.; Bussmann, Ezra B.; Young, Steve M.; Anderson, Evan M.; Marshall, Michael T.; Ohlhausen, J.A.; Kotula, Paul G.; Lu, Ping L.; Campbell, DeAnna M.; Lu, Tzu-Ming L.; Liu, Peter Q.; Ward, Daniel R.; Misra, Shashank M.

Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.

More Details

ALO-NMF: Accelerated Locality-Optimized Non-negative Matrix Factorization

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Moon, Gordon E.; Ellis, John E.; Sukumaran-Rajam, Aravind; Parthasarathy, Srinivasan; Sadayappan, P.

Non-negative Matrix Factorization (NMF) is a key kernel for unsupervised dimension reduction used in a wide range of applications, including graph mining, recommender systems and natural language processing. Due to the compute-intensive nature of applications that must perform repeated NMF, several parallel implementations have been developed. However, existing parallel NMF algorithms have not addressed data locality optimizations, which are critical for high performance since data movement costs greatly exceed the cost of arithmetic/logic operations on current computer systems. In this paper, we present a novel optimization method for parallel NMF algorithm based on the HALS (Hierarchical Alternating Least Squares) scheme that incorporates algorithmic transformations to enhance data locality. Efficient realizations of the algorithm on multi-core CPUs and GPUs are developed, demonstrating a new Accelerated Locality-Optimized NMF (ALO-NMF) that obtains up to 2.29x lower data movement cost and up to 4.45x speedup over existing state-of-the-art parallel NMF algorithms.

More Details

ALO-NMF: Accelerated Locality-Optimized Non-negative Matrix Factorization

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Moon, Gordon E.; Ellis, John E.; Sukumaran-Rajam, Aravind; Parthasarathy, Srinivasan; Sadayappan, P.

Non-negative Matrix Factorization (NMF) is a key kernel for unsupervised dimension reduction used in a wide range of applications, including graph mining, recommender systems and natural language processing. Due to the compute-intensive nature of applications that must perform repeated NMF, several parallel implementations have been developed. However, existing parallel NMF algorithms have not addressed data locality optimizations, which are critical for high performance since data movement costs greatly exceed the cost of arithmetic/logic operations on current computer systems. In this paper, we present a novel optimization method for parallel NMF algorithm based on the HALS (Hierarchical Alternating Least Squares) scheme that incorporates algorithmic transformations to enhance data locality. Efficient realizations of the algorithm on multi-core CPUs and GPUs are developed, demonstrating a new Accelerated Locality-Optimized NMF (ALO-NMF) that obtains up to 2.29x lower data movement cost and up to 4.45x speedup over existing state-of-the-art parallel NMF algorithms.

More Details

Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys

Journal of Chemical Physics

Laros, James H.; Wildey, Timothy M.; Tranchida, Julien G.; Thompson, Aidan P.

We present a scale-bridging approach based on a multi-fidelity (MF) machine-learning (ML) framework leveraging Gaussian processes (GP) to fuse atomistic computational model predictions across multiple levels of fidelity. Through the posterior variance of the MFGP, our framework naturally enables uncertainty quantification, providing estimates of confidence in the predictions. We used density functional theory as high-fidelity prediction, while a ML interatomic potential is used as low-fidelity prediction. Practical materials' design efficiency is demonstrated by reproducing the ternary composition dependence of a quantity of interest (bulk modulus) across the full aluminum-niobium-titanium ternary random alloy composition space. The MFGP is then coupled to a Bayesian optimization procedure, and the computational efficiency of this approach is demonstrated by performing an on-the-fly search for the global optimum of bulk modulus in the ternary composition space. The framework presented in this manuscript is the first application of MFGP to atomistic materials simulations fusing predictions between density functional theory and classical interatomic potential calculations.

More Details

Performance Portable Supernode-based Sparse Triangular Solver for Manycore Architectures

ACM International Conference Proceeding Series

Yamazaki, Ichitaro Y.; Rajamanickam, Sivasankaran R.; Ellingwood, Nathan D.

Sparse triangular solver is an important kernel in many computational applications. However, a fast, parallel, sparse triangular solver on a manycore architecture such as GPU has been an open issue in the field for several years. In this paper, we develop a sparse triangular solver that takes advantage of the supernodal structures of the triangular matrices that come from the direct factorization of a sparse matrix. We implemented our solver using Kokkos and Kokkos Kernels such that our solver is portable to different manycore architectures. This has the additional benefit of allowing our triangular solver to use the team-level kernels and take advantage of the hierarchical parallelism available on the GPU. We compare the effects of different scheduling schemes on the performance and also investigate an algorithmic variant called the partitioned inverse. Our performance results on an NVIDIA V100 or P100 GPU demonstrate that our implementation can be 12.4 × or 19.5 × faster than the vendor optimized implementation in NVIDIA's CuSPARSE library.

More Details

Efficient optimization method for finding minimum energy paths of magnetic transitions

Journal of Physics Condensed Matter

Tranchida, Julien G.; Ivanov, A.V.; Dagbartsson, D.; Uzdin, V.M.; Jonsson, H.

Efficient algorithms for the calculation of minimum energy paths of magnetic transitions are implemented within the geodesic nudged elastic band (GNEB) approach. While an objective function is not available for GNEB and a traditional line search can, therefore, not be performed, the use of limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) and conjugate gradient algorithms in conjunction with orthogonal spin optimization (OSO) approach is shown to greatly outperform the previously used velocity projection and dissipative Landau-Lifschitz dynamics optimization methods. The implementation makes use of energy weighted springs for the distribution of the discretization points along the path and this is found to improve performance significantly. The various methods are applied to several test problems using a Heisenberg-type Hamiltonian, extended in some cases to include Dzyaloshinskii-Moriya and exchange interactions beyond nearest neighbours. Minimum energy paths are found for magnetization reversals in a nano-island, collapse of skyrmions in two-dimensional layers and annihilation of a chiral bobber near the surface of a three-dimensional magnet. The LBFGS-OSO method is found to outperform the dynamics based approaches by up to a factor of 8 in some cases.

More Details

Parallel algorithms for hyperdynamics and local hyperdynamics

Journal of Chemical Physics

Plimpton, Steven J.; Perez, Danny; Voter, Arthur F.

Hyperdynamics (HD) is a method for accelerating the timescale of standard molecular dynamics (MD). It can be used for simulations of systems with an energy potential landscape that is a collection of basins, separated by barriers, where transitions between basins are infrequent. HD enables the system to escape from a basin more quickly while enabling a statistically accurate renormalization of the simulation time, thus effectively boosting the timescale of the simulation. In the work of Kim et al. [J. Chem. Phys. 139, 144110 (2013)], a local version of HD was formulated, which exploits the intrinsic locality characteristic typical of most systems to mitigate the poor scaling properties of standard HD as the system size is increased. Here, we discuss how both HD and local HD can be formulated to run efficiently in parallel. We have implemented these ideas in the LAMMPS MD code, which means HD can be used with any interatomic potential LAMMPS supports. Together, these parallel methods allow simulations of any size to achieve the time acceleration offered by HD (which can be orders of magnitude), at a cost of 2-4× that of standard MD. As examples, we performed two simulations of a million-atom system to model the diffusion and clustering of Pt adatoms on a large patch of the Pt(100) surface for 80 μs and 160 μs.

More Details

Improved reference system for the corrected rigid spheres equation of state model

Journal of Applied Physics

Cowen, Benjamin J.; Carpenter, John H.

The Corrected Rigid Spheres (CRIS) equation of state (EOS) model [Kerley, J. Chem. Phys. 73, 469 (1980); 73, 478 (1980); 73, 487 (1980)], developed from fluid perturbation theory using a hard sphere reference system, has been successfully used to calculate the EOS of many materials, including gases and metals. The radial distribution function (RDF) plays a pivotal role in choosing the sphere diameter, through a variational principle, as well as the thermodynamic response. Despite its success, the CRIS model has some shortcomings in that it predicts too large a temperature for liquid-vapor critical points, can break down at large compression, and is computationally expensive. We first demonstrate that an improved analytic representation of the hard sphere RDF does not alleviate these issues. Relaxing the strict adherence of the RDF to hard spheres allows an accurate fit to the isotherms and vapor dome of the Lennard-Jones fluid using an arbitrary reference system. The second order correction is eliminated, limiting the breakdown at large compression and significantly reducing the computation cost. The transferability of the new model to real systems is demonstrated on argon, with an improved vapor dome compared to the original CRIS model.

More Details

Models and analysis of fuel switching generation impacts on power system resilience

IEEE Power and Energy Society General Meeting

Wilches-Bernal, Felipe; Knueven, Ben; Staid, Andrea S.; Watson, Jean-Paul W.

This paper presents model formulations for generators that have the ability to use multiple fuels and to switch between them if necessary. These models are used to generate different scenarios of fuel switching penetration from a test power system. With these scenarios, for a severe disruption in the fuel supply to multiple generators, the paper analyzes the effect that fuel switching has on the resilience of the power system. Load not served is used as the proxy metric to evaluate power system resilience. The paper shows that the presence of generators with fuel switching capabilities considerably reduces the amount and duration of the load shed by the system facing the fuel disruption.

More Details

Code-verification techniques for hypersonic reacting flows in thermochemical nonequilibrium

Journal of Computational Physics

Freno, Brian A.; Carnes, Brian C.; Weirs, Vincent G.

The study of hypersonic flows and their underlying aerothermochemical reactions is particularly important in the design and analysis of vehicles exiting and reentering Earth's atmosphere. Computational physics codes can be employed to simulate these phenomena; however, code verification of these codes is necessary to certify their credibility. To date, few approaches have been presented for verifying codes that simulate hypersonic flows, especially flows reacting in thermochemical nonequilibrium. In this work, we present our code-verification techniques for verifying the spatial accuracy and thermochemical source term in hypersonic reacting flows in thermochemical nonequilibrium. Additionally, we demonstrate the effectiveness of these techniques on the Sandia Parallel Aerodynamics and Reentry Code (SPARC).

More Details

An active learning high-throughput microstructure calibration framework for solving inverse structure–process problems in materials informatics

Acta Materialia

Laros, James H.; Mitchell, John A.; Swiler, Laura P.; Wildey, Timothy M.

Determining a process–structure–property relationship is the holy grail of materials science, where both computational prediction in the forward direction and materials design in the inverse direction are essential. Problems in materials design are often considered in the context of process–property linkage by bypassing the materials structure, or in the context of structure–property linkage as in microstructure-sensitive design problems. However, there is a lack of research effort in studying materials design problems in the context of process–structure linkage, which has a great implication in reverse engineering. In this work, given a target microstructure, we propose an active learning high-throughput microstructure calibration framework to derive a set of processing parameters, which can produce an optimal microstructure that is statistically equivalent to the target microstructure. The proposed framework is formulated as a noisy multi-objective optimization problem, where each objective function measures a deterministic or statistical difference of the same microstructure descriptor between a candidate microstructure and a target microstructure. Furthermore, to significantly reduce the physical waiting wall-time, we enable the high-throughput feature of the microstructure calibration framework by adopting an asynchronously parallel Bayesian optimization by exploiting high-performance computing resources. Case studies in additive manufacturing and grain growth are used to demonstrate the applicability of the proposed framework, where kinetic Monte Carlo (kMC) simulation is used as a forward predictive model, such that for a given target microstructure, the target processing parameters that produced this microstructure are successfully recovered.

More Details
Results 1201–1300 of 9,998
Results 1201–1300 of 9,998