Tritium population thermodynamics and transport kinetics critically define the tritium storage performance of zirconium tritides that can be used for a variety of nuclear applications including tritium-producing burnable absorber rods. Both thermodynamic and kinetic properties can be sensitive to grain sizes of materials and can be significantly altered by irradiated defects during operation under the reactor environments. A thorough experimental characterization of how these properties evolve under different reactor conditions and different initial grain structures is extremely challenging. Here molecular dynamics simulations are used to investigate tritium population and diffusion in zirconium with and without different planar symmetric and asymmetric tilt grain boundaries and irradiated defects. Here, we found that in addition to trapping tritium, the most significant effect of planar grain boundaries is to increase tritium diffusivity on the boundary plane. Furthermore, fine grain structures are found to mitigate the change of tritium diffusivity due to irradiated point defects as these point defects are likely to migrate to and sink at grain boundaries.
Here, the effectiveness of continuous vibro-impact forcing representations for the cantilevered pipe that conveys fluid is explored and analyzed. The previously accepted forcing model utilizing a smoothened trilinear spring is estimated using three continuous forcing representations, namely, polynomial, rational polynomial, and hyperbolic tangent. The accuracy of the estimated forcing functions is investigated and analyzed by calculating the root mean square error, and bifurcation diagrams are generated and compared to the nominal system. Additionally, the dynamic response of the system is further characterized using Poincare maps, power spectra, and basins of attraction. Once all continuous forcing representations are analyzed and compared to the nominal system, the computational cost of each method is examined, and further limitations of the hyperbolic tangent method are discovered. It is proved that the hyperbolic tangent forcing representation most accurately captures the dynamic response of the pipeline, and the least accurate representation is the rational polynomial representation. Additionally, considerable computational cost is saved when employing the hyperbolic tangent representation compared to the discontinuous representation.
Mixtures of gas-phase hydrogen isotopologues (diatomic combinations of protium, deuterium, and tritium) can be separated using columns containing a solid such as palladium that reversibly absorbs hydrogen. A temperature-swing process can transport hydrogen into or out of a column by inducing temperature-dependent absorption or desorption reactions. We consider two designs: a thermal cycling absorption process, which moves hydrogen back and forth between two columns, and a simulated moving bed (SMB), where columns are in a circular arrangement. We present a numerical mass and heat transport model of absorption columns for hydrogen isotope separation. It includes a detailed treatment of the absorption-desorption reaction for palladium. By comparing the isotope concentrations within the columns as a function of position and time, we observe that SMB can lead to sharper separations for a given number of thermal cycles by avoiding the remixing of isotopes.