Publications

Results 9351–9375 of 99,299

Search results

Jump to search filters

High-fidelity wind farm simulation methodology with experimental validation

Journal of Wind Engineering and Industrial Aerodynamics

Foulk, James W.; Brown, Kenneth A.; Develder, Nathaniel; Herges, T.; Knaus, Robert C.; Sakievich, Philip; Cheung, Lawrence; Houchens, Brent C.; Blaylock, Myra L.; Maniaci, David C.

The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.

More Details

Alpha Spectrometry Results for Groundwater Samples Collected in Northern Iraq and a Summary of the Environmental Setting of the Adaya Burial Site

Copland, John R.; Farrar, David R.; Osborn, Douglas

The Radiation Protection Center (RPC) of the Iraqi Ministry of Environment continues to evaluate the potential health impacts associated with the Adaya Burial Site, which is located 33 kilometers (20.5 miles) southwest of Mosul. This report documents the radiological analyses of 16 groundwater samples collected from wells located in the vicinity of the Adaya Burial Site and at other sites in northern Iraq. The Adaya Burial Site is a high-risk dump site because a large volume of radioactive material and contaminated soil is located on an unsecure hillside above the village of Tall ar Ragrag. The uranium activities for the 16 water samples in northern Iraq are considered to be naturally occurring and do not indicate artificial (man-made) contamination. With one exception, the alpha spectrometry results for the 16 wells that were sampled in 2019 indicate that the water quality concerning the three uranium isotopes (Uranium-233/234, Uranium-235/236, and Uranium-238) was acceptable for potable purposes (drinking and cooking). However, Well 7 in Mosul had a Uranium-233/234 activity concentration that slightly exceeded the World Health Organization guidance level. Eight of the 16 wells are located in the villages of Tall ar Ragrag and Adaya and had naturally occurring uranium concentrations. Wells in the villages of Tall ar Ragrag and Adaya are located near the Adaya Burial Site and should be sampled on an annual schedule. The list of groundwater analytes should include metals, total uranium, isotopic uranium, gross alpha/beta, gamma spectroscopy, organic compounds, and standard water quality parameters. Our current understanding of the hydrogeologic setting in the vicinity of the Adaya Burial Site is solely based on villager's domestic wells, topographic maps, and satellite imagery. To better understand the hydrogeologic setting, a Groundwater Monitoring Program needs to be developed and should include the installation of twelve groundwater monitoring wells in the vicinity of Tall ar Ragrag and the Adaya Burial Site. Characterization of the limestone aquifer and overlying alluvium is needed. RPC should continue to support health assessments for the villagers in Tall ar Ragrag and Adaya. Collecting samples for surface water (storm water), airborne dust, vegetation, and washway sediment should be conducted on a routine basis. Human access to the Adaya Burial Site needs to be strictly limited. Livestock access on or near the burial site needs to be eliminated. The surface-water exposure pathway is likely a greater threat than the groundwater exposure pathway. Installation of a surface-water diversion or collection system is recommended in order to reduce the potential for humans and livestock to come in contact with contaminated water and sediment. To reduce exposure to villagers, groundwater treatment should be considered if elevated uranium or other contaminants are detected in drinking water. Installing water-treatment systems would likely be quicker to accomplish than remediation and excavation of the Adaya Burial Site. The known potential for human exposure to uranium and metals (such as arsenic, chromium, selenium, and strontium) at the Adaya Burial Site is serious. Additional characterization , mitigation, and remediation efforts should be given a high priority.

More Details

Transmitted wave measurements in cold sprayed materials under dynamic compression

Mccoy, Chad A.; Branch, Brittany A.; Vackel, Andrew

Spray-formed materials have complex microstructures which pose challenges for microscale and mesoscale modeling. To constrain these models, experimental measurements of wave profiles when subjecting the material to dynamic compression are necessary. The use of a gas gun to launch a shock into a material is a traditional method to understand wave propagation and provide information of time-dependent stress variations due to complex microstructures. This data contains information on wave reverberations within a material and provides a boundary condition for simulation. Here we present measurements of the wavespeed and wave profile at the rear surface of tantalum, niobium, and a tantalum/niobium blend subjected to plate impact. Measurements of the Hugoniot elastic limit are compared to previous work and wavespeeds are compared to longitudinal sound velocity measurements to examine wave damping due to the porous microstructure.

More Details

Sandia National Laboratories FY21 Progress Report

Aguirre, Brandon A.

The Energetic Neutrons campaign led by Sandia National Laboratories (SNL) had a successful year testing electronic devices and printed circuit boards (PCBs) under 14 MeV neutron irradiation at OMEGA. During FY21 Sandia’s Neutron Effects Diagnostics (NEDs) and data acquisition systems were upgraded to test novel commercial off-the-shelf and Sandia-fabricated electronic components that support SNL’s National Security mission. The upgrades to the Sandia platform consisted of new cable chains, sample mount fixtures and a new fiber optics platform for testing optoelectronic devices.

More Details
Results 9351–9375 of 99,299
Results 9351–9375 of 99,299