Publications

Results 9326–9350 of 99,299

Search results

Jump to search filters

Solid-Density Ion Temperature from Redshifted and Double-Peaked Stark Line Shapes

Physical Review Letters

Kraus, B.F.; Gao, Lan; Hill, K.W.; Bitter, M.; Efthimion, P.C.; Gomez, Thomas; Moreau, A.; Hollinger, R.; Wang, Shoujun; Song, Huanyu; Rocca, J.J.; Mancini, R.C.

Heβ spectral line shapes are important for diagnosing temperature and density in many dense plasmas. This work presents Heβ line shapes measured with high spectral resolution from solid-density plasmas with minimized gradients. The line shapes show hallmark features of Stark broadening, including quantifiable redshifts and double-peaked structure with a significant dip between the peaks; these features are compared to models through a Markov chain Monte Carlo framework. Line shape theory using the dipole approximation can fit the width and peak separation of measured line shapes, but it cannot resolve an ambiguity between electron density ne and ion temperature Ti, since both parameters influence the strength of quasistatic ion microfields. Here a line shape model employing a full Coulomb interaction for the electron broadening computes self-consistent line widths and redshifts through the monopole term; redshifts have different dependence on plasma parameters and thus resolve the ne-Ti ambiguity. The measured line shapes indicate densities that are 80-100% of solid, identifying a regime of highly ionized but well-tamped plasma. This analysis also provides the first strong evidence that dense ions and electrons are not in thermal equilibrium, despite equilibration times much shorter than the duration of x-ray emission; cooler ions may arise from nonclassical thermalization rates or anomalous energy transport. The experimental platform and diagnostic technique constitute a promising new approach for studying ion-electron equilibration in dense plasmas.

More Details

Spatially Resolved Potential and Li-Ion Distributions Reveal Performance-Limiting Regions in Solid-State Batteries

ACS Energy Letters

Fuller, Elliot J.; Strelcov, Evgheni; Weaver, Jamie L.; Swift, Michael W.; Sugar, Joshua D.; Kolmakov, Andrei; Zhitenev, Nikolai; Mcclelland, Jabez J.; Qi, Yue; Dura, Joseph A.; Talin, Albert A.

The performance of solid-state electrochemical systems is intimately tied to the potential and lithium distributions across electrolyte-electrode junctions that give rise to interface impedance. Here, we combine two operando methods, Kelvin probe force microscopy (KPFM) and neutron depth profiling (NDP), to identify the rate-limiting interface in operating Si-LiPON-LiCoO2 solid-state batteries by mapping the contact potential difference (CPD) and the corresponding Li distributions. The contributions from ions, electrons, and interfaces are deconvolved by correlating the CPD profiles with Li-concentration profiles and by comparisons with first-principles-informed modeling. We find that the largest potential drop and variation in the Li concentration occur at the anode-electrolyte interface, with a smaller drop at the cathode-electrolyte interface and a shallow gradient within the bulk electrolyte. Correlating these results with electrochemical impedance spectroscopy following battery cycling at low and high rates confirms a long-standing conjecture linking large potential drops with a rate-limiting interfacial process.

More Details

A Minimal Information Set to Enable Verifiable Theoretical Battery Research

ACS Energy Letters

Mistry, Aashutosh; Verma, Ankit; Ciez, Rebecca; Sulzer, Valentin; Brosa Planella, Ferran; Timms, Robert; Zhang, Yumin; Kurchin, Rachel; Dechent, Philipp; Li, Weihan; Greenbank, Samuel; Ahmad, Zeeshan; Fenton, Alexis M.; Tenny, Kevin; Patel, Prehit; Juarez Robles, Daniel; Gasper, Paul; Colclasure, Andrew; Baskin, Artem; Khoo, Edwin; Allu, Srikanth; Howey, David; Decaluwe, Steven; Roberts, Scott A.; Viswanathan, Venkatasubramanian

Batteries are an enabling technology for addressing sustainability through the electrification of various forms of transportation (1) and grid storage. (2) Batteries are truly multi-scale, multi-physics devices, and accordingly various theoretical descriptions exist to understand their behavior (3-5) ranging from atomistic details to techno-economic trends. As we explore advanced battery chemistries (6,7) or previously inaccessible aspects of existing ones, (8-10) new theories are required to drive decisions. (11-13) The decisions are influenced by the limitations of the underlying theory. Advanced theories used to understand battery phenomena are complicated and require substantial effort to reproduce. However, such constraints should not limit the insights from these theories. We can strive to make the theoretical research verifiable such that any battery stakeholder can assess the veracity of new theories, sophisticated simulations or elaborate analyses. We distinguish verifiability, which amounts to “Can I trust the results, conclusions and insights and identify the context where they are relevant?”, from reproducibility, which ensures “Would I get the same results if I followed the same steps?” With this motivation, we propose a checklist to guide future reports of theoretical battery research in Table 1. We hereafter discuss our thoughts leading to this and how it helps to consistently document necessary details while allowing complete freedom for creativity of individual researchers. Given the differences between experimental and theoretical studies, the proposed checklist differs from its experimental counterparts. (14,15) This checklist covers all flavors of theoretical battery research, ranging from atomic/molecular calculations (16-19) to mesoscale (20,21) and continuum-scale interactions, (9,22) and techno-economic analysis. (23,24) Finally, as more and more experimental studies analyze raw data, (25) we feel this checklist would be broadly relevant.

More Details

From n- To p-Type Material: Effect of Metal Ion on Charge Transport in Metal-Organic Materials

ACS Applied Materials and Interfaces

Allendorf, Mark; Yoon, Sungwon; Stavila, Vitalie; Mroz, Austin M.; Bennett, Thomas D.; He, Yuping; Keen, David A.; Hendon, Christopher H.; So, Monica C.; Talin, Albert A.

An intriguing new class of two-dimensional (2D) materials based on metal-organic frameworks (MOFs) has recently been developed that displays electrical conductivity, a rarity among these nanoporous materials. The emergence of conducting MOFs raises questions about their fundamental electronic properties, but few studies exist in this regard. Here, we present an integrated theory and experimental investigation to probe the effects of metal substitution on the charge transport properties of M-HITP, where M = Ni or Pt and HITP = 2,3,6,7,10,11-hexaiminotriphenylene. The results show that the identity of the M-HITP majority charge carrier can be changed without intentional introduction of electronically active dopants. We observe that the selection of the metal ion substantially affects charge transport. Using the known structure, Ni-HITP, we synthesized a new amorphous material, a-Pt-HITP, which although amorphous is nevertheless found to be porous upon desolvation. Importantly, this new material exhibits p-type charge transport behavior, unlike Ni-HITP, which displays n-type charge transport. These results demonstrate that both p- and n-type materials can be achieved within the same MOF topology through appropriate choice of the metal ion.

More Details

Reynolds stress scaling in the near-wall region of wall-bounded flows

Journal of Fluid Mechanics

Lee, Myoungkyu; Smits, Alexander J.; Hultmark, Marcus; Pirozzoli, Sergio; Wu, Xiaohua

A new scaling is derived that yields a Reynolds-number-independent profile for all components of the Reynolds stress in the near-wall region of wall-bounded flows, including channel, pipe and boundary layer flows. The scaling demonstrates the important role played by the wall shear stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence behaviour.

More Details

Sensitive parameter identification and uncertainty quantification for the stability of pipeline conveying fluid

International journal of mechanics and materials in design

Alvis, Timothy; Ceballes, Samantha; Abdelkefi, Abdessattar

In this study, several uncertainty quantification and sensitivity analysis methods are used to determine the most sensitive geometric and material input parameters of a cantilevered pipeline conveying fluid when uncertainty is introduced to the system at the onset of instability. The full nonlinear equations of motion are modeled using the extended Hamilton’s principle and then discretized using Galerkin’s method. A parametric study is first performed, and the Morris elementary effects are calculated to obtain a preliminary understanding of how the onset speed changes when each parameter is introduced to a ± 5% uncertainty. Then, four different input uncertainty distributions, mainly, uniform and Gaussian distribution, are chosen to investigate how input distributions affect uncertainty in the output. A convergence analysis is used to determine the number of samples needed to maintain simulation accuracy while saving the most computational time. Then, Monte Carlo simulations are run, and the output distributions for each input distribution at ± 1%, ± 3% and ± 5% input uncertainty range are found and discussed. Additionally, the Pearson correlation coefficients are evaluated for different uncertainty ranges. A final Monte Carlo study is performed in which single parameters are held constant while all others still have uncertainty. Overall, the flow speed at the onset of instability is the most sensitive to changes in the outer diameter of the pipe.

More Details

Overlap Concentration in Salt-Free Polyelectrolyte Solutions

Macromolecules

Stevens, Mark J.; Bollinger, Jonathan A.; Grest, Gary S.; Rubinstein, Michael

For strongly charged polyelectrolytes in salt-free solutions, we use molecular dynamics simulations of a coarse-grained bead-spring model to calculate overlap concentrations c∗ and chain structure for polymers containing N = 10 to 1600 monomers. Over much of this range, we find that the end-to-end distance R∗ at c∗ increases faster than linearly with increasing N, as chains at the overlap concentration approach strongly extended conformations. This trend results in the overlap concentration c∗ decreasing as a stronger function of N than the classical prediction c∗ ∼N-2. This stronger dependence can be fit either by a logarithmic correction to scaling or by an apparent scaling c∗ ∼N-m, with m > 2.

More Details

Polarizable Water Potential Derived from a Model Electron Density

Journal of Chemical Theory and Computation

Rackers, Joshua R.; Silva, Roseane R.; Wang, Zhi; Ponder, Jay W.

A new empirical potential for efficient, large scale molecular dynamics simulation of water is presented. The HIPPO (Hydrogen-like Intermolecular Polarizable POtential) force field is based upon the model electron density of a hydrogen-like atom. This framework is used to derive and parametrize individual terms describing charge penetration damped permanent electrostatics, damped polarization, charge transfer, anisotropic Pauli repulsion, and damped dispersion interactions. Initial parameter values were fit to Symmetry Adapted Perturbation Theory (SAPT) energy components for ten water dimer configurations, as well as the radial and angular dependence of the canonical dimer. The SAPT-based parameters were then systematically refined to extend the treatment to water bulk phases. The final HIPPO water model provides a balanced representation of a wide variety of properties of gas phase clusters, liquid water, and ice polymorphs, across a range of temperatures and pressures. This water potential yields a rationalization of water structure, dynamics, and thermodynamics explicitly correlated with an ab initio energy decomposition, while providing a level of accuracy comparable or superior to previous polarizable atomic multipole force fields. The HIPPO water model serves as a cornerstone around which similarly detailed physics-based models can be developed for additional molecular species.

More Details

Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Theory Manual (V.6.15)

Dalbey, Keith R.; Eldred, Michael S.; Geraci, Gianluca; Jakeman, John D.; Maupin, Kathryn A.; Monschke, Jason A.; Seidl, Daniel T.; Tran, Anh; Menhorn, Friedrich; Zeng, Xiaoshu

The Dakota toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas; Hadgu, Teklu; Bell, Nelson S.; Foulk, James W.; Kotula, Paul G.; Kruichak-Duhigg, Jessica N.; Sanchez-Hernandez, Bernadette A.; Casilas, M.R.; Kolesnichenko, Igor V.; Caporuscio, F.; Sauer, K.B.; Rock, M.; Zheng, L.; Borglin, S.; Lammers, L.; Whittaker, M.; Zarzycki, P.; Fox, P.; Chang, C.; Subramanian, N.; Nico, P.; Tournassat, C.; Chou, C.; Xu, H.; Singer, E.; Steefel, C.; Peruzzo, L.; Wu, Y.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details
Results 9326–9350 of 99,299
Results 9326–9350 of 99,299