Growing interest in renewable energy sources has led to an increased installation rate of distributed energy resources (DERs) such as solar photovoltaics (PVs) and wind turbine generators (WTGs). The variable nature of DERs has created several challenges for utilities and system operators related to maintaining voltage and frequency. New grid standards are requiring DERs to provide voltage regulation across distribution networks. Volt-Var Curve (VVC) control is an autonomous grid-support function that provides voltage regulation based on the relationship between voltage and reactive power. This paper evaluates the performance of a WTG operating with VVC control. The evaluation of the model involves a MATLAB/Simulink simulation of a distribution system. For this simulation the model considers three WTGs and a variable load that creates a voltage event.
Creation of streaming video stimuli that allow for strict experimental control while providing ease of scene manipulation is difficult to achieve but desired by researchers seeking to approach ecological validity in contexts that involve processing streaming visual information. To that end, we propose leveraging video game modding tools as a method of creating research quality stimuli. As a pilot effort, we used a video game sandbox tool (Garry’s Mod) to create three steaming video scenarios designed to mimic video feeds that physical security personnel might observe. All scenarios required participants to identify the presences of a threat appearing during the video feed. Each scenario differed in level of complexity, in that one scenario required only location monitoring, one required location and action monitoring, and one required location, action, and conjunction monitoring in that when an action was performed it was only considered a threat when performed by a certain character model. While there was no behavioral effect of scenario in terms of accuracy or response times, in all scenarios we found evidence of a P300 when comparing response to threatening stimuli to that of standard stimuli. Results therefore indicate that sufficient levels of experimental control may be achieved to allow for the precise timing required for ERP analysis. Thus, we demonstrate the feasibility of using existing modding tools to create video scenarios amenable to neuroimaging analysis.
Transportation of sodium-bonded spent fuel appears to present no unique challenges. Storage systems for this fuel should be designed to keep water, both liquid and vapor, from contacting the spent fuel. This fuel is not suitable for geologic disposal; therefore, how the spent sodium bonded fuel will be processed and the characteristics of the final disposal waste form(s) need to be considered. TRISO spent fuel appears to present no unique challenges in terms of transportation, storage, or disposal. If the graphite block is disposed of with the TRISO spent fuel, the 14C and 3H generated would need to be considered in the postclosure performance assessment. Salt waste from the molten salt reactor has yet to be transported or stored and might be a challenge to dispose of in a non-salt repositories. Like sodium-bonded spent fuel, how the salt will be treated and the characteristics of the final disposal waste form(s) need to be considered. In addition, radiolysis in the frozen salt waste form continues to generate gas, which presents a hazard. Both HALEU and high-enriched uranium SNF are currently being stored and transported by the DOE. Disposal of fuels with enrichments greater than 5% was included in the disposal plan for Yucca Mountain. The increased potential for criticality associated with the higher enriched SNF is mitigated by additional criticality control measures. Fuels that are similar to some ATFs were part of the disposal plan for Yucca Mountain. Some of the properties of these fuels (swelling, generation of 14C) would have to be considered as part of a postclosure performance assessment.
The National Academy of Sciences, Engineering, and Medicine (NASEM) defines reproducibility as 'obtaining consistent computational results using the same input data, computational steps, methods, code, and conditions of analysis,' and replicability as 'obtaining consistent results across studies aimed at answering the same scientific question, each of which has obtained its own data' [1]. Due to an increasing number of applications of artificial intelligence and machine learning (AI/ML) to fields such as healthcare and digital medicine, there is a growing need for verifiable AI/ML results, and therefore reproducible research and replicable experiments. This paper establishes examples of irreproducible AI/ML applications to medical sciences and quantifies the variance of common AI/ML models (Artificial Neural Network, Naive Bayes classifier, and Random Forest classifiers) for tasks on medical data sets.
The latest high temperature (HT) microcontrollers and memory technology have been investigated for the purpose of enhancing downhole instrumentation capabilities at temperatures above 210°C. As part of the effort, five microcontrollers (Honeywell HT83C51, RelChip RC10001, Texas Instruments SM470R1B1M-HT, SM320F2812-HT, SM320F28335-HT) and one memory chip (RelChip RC2110836) have been evaluated to its rated temperature for a period of one month to determine life expectancy and performance. Pulse rate of the integrated circuit and internal memory scan were performed during testing by remotely located axillary components. This paper will describe challenges encountered in the operation and HT testing of these components. Long-term HT tests results show the variation in power consumption and packaging degradation. The work described in this paper improves downhole instrumentation by enabling greater sensor counts and improving data accuracy and transfer rates at temperatures between 210°C and 300°C.
Measurements that occur within the internal layers of a quantum circuit—midcircuit measurements—are a useful quantum-computing primitive, most notably for quantum error correction. Midcircuit measurements have both classical and quantum outputs, so they can be subject to error modes that do not exist for measurements that terminate quantum circuits. Here we show how to characterize midcircuit measurements, modeled by quantum instruments, using a technique that we call quantum instrument linear gate set tomography (QILGST). We then apply this technique to characterize a dispersive measurement on a superconducting transmon qubit within a multiqubit system. By varying the delay time between the measurement pulse and subsequent gates, we explore the impact of residual cavity photon population on measurement error. QILGST can resolve different error modes and quantify the total error from a measurement; in our experiment, for delay times above 1000ns we measure a total error rate (i.e., half diamond distance) of ϵ⋄=8.1±1.4%, a readout fidelity of 97.0±0.3%, and output quantum-state fidelities of 96.7±0.6% and 93.7±0.7% when measuring 0 and 1, respectively.
A 0.2-2 GHz digitally programmable RF delay element based on a time-interleaved multi-stage switched-capacitor (TIMS-SC) approach is presented. The proposed approach enables hundreds of ns of broadband RF delay by employing sample time expansion in multiple stages of switched-capacitor storage elements. The delay element was implemented in a 45 nm SOI CMOS process and achieves a 2.55-448.6 ns programmable delay range with < 0.12% delay variation across 1.8 GHz of bandwidth at maximum delay, 2.42 ns programmable delay steps, and 330 ns/mm2 area efficiency. The device achieves 24 dB gain, 7.1 dB noise figure, and consumes 80 mW from a 1 V supply with an active area of 1.36 mm2.
For the model-based control of low-voltage microgrids, state and parameter information are required. Different optimal estimation techniques can be employed for this purpose. However, these estimation techniques require knowledge of noise covariances (process and measurement noise). Incorrect values of noise covariances can deteriorate the estimator performance, which in turn can reduce the overall controller performance. This paper presents a method to identify noise covariances for voltage dynamics estimation in a microgrid. The method is based on the autocovariance least squares technique. A simulation study of a simplified 100 kVA, 208 V microgrid system in MATLAB/Simulink validates the method. Results show that estimation accuracy is close to the actual value for Gaussian noise, and non-Gaussian noise has a slightly larger error.
In high temperature (HT) environments often encountered in geothermal wells, data rate transfers for downhole instrumentation are relatively limited due to transmission line bandwidth and insertion loss and the processing speed of HT microcontrollers. In previous research, Sandia National Laboratory Geothermal Department obtained 3.8 Mbps data rates over 1524 m (5000 ft) for single conductor wireline cable with less than a 1x10-8 bit error rate utilizing low temperature NITM hardware (formerly National InstrumentsTM). Our protocol technique was a combination of orthogonal frequency-division multiplexing and quadrature amplitude modulation across the bandwidth of the single conductor wireline. This showed it is possible to obtain high data rates in low bandwidth wirelines. This paper focuses on commercial HT microcontrollers (µC), rather than low temperature NITM modules, to enable high-speed communication in an HT environment. As part of this effort, four devices were evaluated, and an optimal device (SM320F28335-HT) was selected for its high clock rates, floating-point unit, and on-board analog-to-digital converter. A printed circuit board was assembled with the HT µC, an HT resistor digital-to-analog converter, and an HT line driver. The board was tested at the microcontroller's rated maximum temperature (210°C) for a week while transmitting through a 1524 m (5000 ft) wireline. A final test was conducted to the point of failure at elevated temperatures. This paper will discuss communication methods, achieved data rates, and hardware selection. This effort contributes to the enhancement of HT instrumentation by enabling greater sensor counts and improving data accuracy and transfer rates.
The installation of digital sensors, such as advanced meter infrastructure (AMI) meters, has provided the means to implement a wide variety of techniques to increase visibility into the distribution system, including the ability to calibrate the utility models using data-driven algorithms. One challenge in maintaining accurate and up-to-date distribution system models is identifying changes and event occurrences that happen during the year, such as customers who have changed phases due to maintenance or other events. This work proposes a method for the detection of phase change events that utilizes techniques from an existing phase identification algorithm. This work utilizes an ensemble step to obtain predicted phases for windows of data, therefore allowing the predicted phase of customers to be observed over time. The proposed algorithm was tested on four utility datasets as well as a synthetic dataset. The synthetic tests showed the algorithm was capable of accurately detecting true phase change events while limiting the number of false-positive events flagged. In addition, the algorithm was able to identify possible phase change events on two real datasets.
We have extended the computational singular perturbation (CSP) method to differential algebraic equation (DAE) systems and demonstrated its application in a heterogeneous-catalysis problem. The extended method obtains the CSP basis vectors for DAEs from a reduced Jacobian matrix that takes the algebraic constraints into account. We use a canonical problem in heterogeneous catalysis, the transient continuous stirred tank reactor (T-CSTR), for illustration. The T-CSTR problem is modelled fundamentally as an ordinary differential equation (ODE) system, but it can be transformed to a DAE system if one approximates typically fast surface processes using algebraic constraints for the surface species. We demonstrate the application of CSP analysis for both ODE and DAE constructions of a T-CSTR problem, illustrating the dynamical response of the system in each case. We also highlight the utility of the analysis in commenting on the quality of any particular DAE approximation built using the quasi-steady state approximation (QSSA), relative to the ODE reference case.
The Multi-Fidelity Toolkit (MFTK) is a simulation tool being developed at Sandia National Laboratories for aerodynamic predictions of compressible flows over a range of physics fidelities and computational speeds. These models include the Reynolds-Averaged Navier–Stokes (RANS) equations, the Euler equations, and modified Newtonian aerodynamics (MNA) equations, and they can be invoked independently or coupled with hierarchical Kriging to interpolate between high-fidelity simulations using lower-fidelity data. However, as with any new simulation capability, verification and validation are necessary to gather credibility evidence. This work describes formal code-and solution-verification activities. Code verification is performed on the MNA model by comparing with an analytical solution for flat-plate and inclined-plate geometries. Solution-verification activities include grid-refinement studies of HIFiRE-1 wind tunnel measurements, which are used for validation, for all model fidelities.
Interest in the application of DC Microgrids to distribution systems have been spurred by the continued rise of renewable energy resources and the dependence on DC loads. However, in comparison to AC systems, the lack of natural zero crossing in DC Microgrids makes the interruption of fault currents with fuses and circuit breakers more difficult. DC faults can cause severe damage to voltage-source converters within few milliseconds, hence, the need to quickly detect and isolate the fault. In this paper, the potential for five different Machine Learning (ML) classifiers to identify fault type and fault resistance in a DC Microgrid is explored. The ML algorithms are trained using simulated fault data recorded from a 750 VDC Microgrid modeled in PSCAD/EMTDC. The performance of the trained algorithms are tested using real fault data gathered from an operational DC Microgrid located on the Kirtland Air Force Base. Of the five ML algorithms, three could detect the fault and determine the fault type with at least 99% accuracy, and only one could estimate the fault resistance with at least 99% accuracy. By performing a self-learning monitoring and decision making analysis, protection relays equipped with ML algorithms can quickly detect and isolate faults to improve the protection operations on DC Microgrids.
Rock salt is being considered as a medium for energy storage and radioactive waste disposal. A Disturbed Rock Zone (DRZ) develops in the immediate vicinity of excavations in rock salt, with an increase in permeability, which alters the migration of gases and liquids around the excavation. When creep occurs adjacent to a stiff inclusion such as a concrete plug, it is expected that the stress state near the inclusion will become more hydrostatic and less deviatoric, promoting healing (permeability reduction) of the DRZ. In this scoping study, we measured the permeability of DRZ rock salt with time adjacent to inclusions (plugs) of varying stiffness to determine how the healing of rock salt, as reflected in the permeability changes, is a function of the stress and time. Samples were created with three different inclusion materials in a central hole along the axis of a salt core: (i) very soft silicone sealant, (ii) sorel cement, and (iii) carbon steel. The measured permeabilities are corrected for the gas slippage effect. We observed that the permeability change is a function of the inclusion material. The stiffer the inclusion, the more rapidly the permeability reduces with time.
Demonstration of broadband nanosecond output from a burst-mode-pumped noncolinear optical parametric oscillator (NOPO) has been achieved at 40 kHz. The NOPO is pumped by 355-nm output at 50 mJ/pulse for 45 pulses. A bandwidth of 540 cm-1 was achieved from the OPO with a conversion efficiency of 10% for 5 mJ/pulse. Higher bandwidths up to 750 cm-1 were readily achievable at reduced performance and beam quality. The broadband NOPO output was used for a planar BOXCARS phase matching scheme for N2 CARS measurements in a near adiabatic H2/air flame. Single-shot CARS measurements were taken for equivalence ratios of φ=0.52-0.86 for temperatures up to 2200 K.
The precise estimation of performance loss rate (PLR) of photovoltaic (PV) systems is vital for reducing investment risks and increasing the bankability of the technology. Until recently, the PLR of fielded PV systems was mainly estimated through the extraction of a linear trend from a time series of performance indicators. However, operating PV systems exhibit failures and performance losses that cause variability in the performance and may bias the PLR results obtained from linear trend techniques. Change-point (CP) methods were thus introduced to identify nonlinear trend changes and behaviour. The aim of this work is to perform a comparative analysis among different CP techniques for estimating the annual PLR of eleven grid-connected PV systems installed in Cyprus. Outdoor field measurements over an 8-year period (June 2006-June 2014) were used for the analysis. The obtained results when applying different CP algorithms to the performance ratio time series (aggregated into monthly blocks) demonstrated that the extracted trend may not always be linear but sometimes can exhibit nonlinearities. The application of different CP methods resulted to PLR values that differ by up to 0.85% per year (for the same number of CPs/segments).
Carbon sequestration is a growing field that requires subsurface monitoring for potential leakage of the sequestered fluids through the casing annulus. Sandia National Laboratories (SNL) is developing a smart collar system for downhole fluid monitoring during carbon sequestration. This technology is part of a collaboration between SNL, University of Texas at Austin (UT Austin) (project lead), California Institute of Technology (Caltech), and Research Triangle Institute (RTI) to obtain real-time monitoring of the movement of fluids in the subsurface through direct formation measurements. Caltech and RTI are developing millimeter-scale radio frequency identification (RFID) sensors that can sense carbon dioxide, pH, and methane. These sensors will be impervious to cement, and as such, can be mixed with cement and poured into the casing annulus. The sensors are powered and communicate via standard RFID protocol at 902-928 MHz. SNL is developing a smart collar system that wirelessly gathers RFID sensor data from the sensors embedded in the cement annulus and relays that data to the surface via a wired pipe that utilizes inductive coupling at the collar to transfer data through each segment of pipe. This system cannot transfer a direct current signal to power the smart collar, and therefore, both power and communications will be implemented using alternating current and electromagnetic signals at different frequencies. The complete system will be evaluated at UT Austin's Devine Test Site, which is a highly characterized and hydraulically fractured site. This is the second year of the three-year effort, and a review of SNL's progress on the design and implementation of the smart collar system is provided.
With the increase in penetration of inverter-based resources (IBRs) in the electrical power system, the ability of these devices to provide grid support to the system has become a necessity. With standards previously developed for the interconnection requirements of grid-following inverters (GFLI) (most commonly photovoltaic inverters), it has been well documented how these inverters 'should' respond to changes in voltage and frequency. However, with other IBRs such as grid-forming inverters (GFMIs) (used for energy storage systems, standalone systems, and as uninterruptable power supplies) these requirements are either: not yet documented, or require a more in deep analysis. With the increased interest in microgrids, GFMIs that can be paralleled onto a distribution system have become desired. With the proper control schemes, a GFMI can help maintain grid stability through fast response compared to rotating machines. This paper will present an experimental comparison of commercially available GFMIand GFLI ' responses to voltage and frequency deviation, as well as the GFMIoperating as a standalone system and subjected to various changes in loads.
Remote assessment of physiological parameters has enabled patient diagnostics without the need for a medical professional to become exposed to potential communicable diseases. In particular, early detection of oxygen saturation, abnormal body temperature, heart rate, and/or blood pressure could affect treatment protocols. The modeling effort in this work uses an adding-doubling radiative transfer model of a seven-layer human skin structure to describe absorption and reflection of incident light within each layer. The model was validated using both abiotic and biotic systems to understand light interactions associated with surfaces consisting of complex topography as well as multiple illumination sources. Using literature-based property values for human skin thickness, absorption, and scattering, an average deviation of 7.7% between model prediction and experimental reflectivity was observed in the wavelength range of 500-1000 nm.
Measurements of gas-phase pressure and temperature in hypersonic flows are important to understanding fluid–structure interactions on vehicle surfaces, and to develop compressible flow turbulence models. To achieve this measurement capability, femtosecond coherent anti-Stokes Raman scattering (fs CARS) is applied at Sandia National Laboratories’ hypersonic wind tunnel. After excitation of rotational Raman transitions by a broadband femtosecond laser pulse, two probe pulses are used: one at an early time where the collisional environment has largely not affected the Raman coherence, and another at a later time after the collisional environment has led to significant J-dependent dephasing of the Raman coherence. CARS spectra from the early probe are fit for temperature, while the later CARS spectra are fit for pressure. Challenges related to implementing fs CARS in cold-flow hypersonic facilities are discussed. Excessive fs pump energy can lead to flow perturbations. The output of a second-harmonic bandwidth compressor (SHBC) is spectrally filtered using a volume Bragg grating to provide the narrowband ps probe pulses and enable single-shot CARS measurements at 1 kHz. Measurements are demonstrated at temperatures and pressures relevant to cold-flow hypersonic wind tunnels in a low-pressure cryostat with an initial demonstration in the hypersonic wind tunnel.
This chapter deals with experimental dynamic substructures which are reduced order models that can be coupled with each other or with finite element derived substructures to estimate the system response of the coupled substructures. A unifying theoretical framework in the physical, modal or frequency domain is reviewed with examples. The major issues that have hindered experimental based substructures are addressed. An example is demonstrated with the transmission simulator method that overcomes the major historical difficulties. Guidelines for the transmission simulator design are presented.
Operon prediction in prokaryotes is critical not only for understanding the regulation of endogenous gene expression, but also for exogenous targeting of genes using newly developed tools such as CRISPR-based gene modulation. A number of methods have used transcriptomics data to predict operons, based on the premise that contiguous genes in an operon will be expressed at similar levels. While promising results have been observed using these methods, most of them do not address uncertainty caused by technical variability between experiments, which is especially relevant when the amount of data available is small. In addition, many existing methods do not provide the flexibility to determine the stringency with which genes should be evaluated for being in an operon pair. We present OperonSEQer, a set of machine learning algorithms that uses the statistic and p-value from a non-parametric analysis of variance test (Kruskal-Wallis) to determine the likelihood that two adjacent genes are expressed from the same RNA molecule. We implement a voting system to allow users to choose the stringency of operon calls depending on whether your priority is high recall or high specificity. In addition, we provide the code so that users can retrain the algorithm and re-establish hyperparameters based on any data they choose, allowing for this method to be expanded as additional data is generated. We show that our approach detects operon pairs that are missed by current methods by comparing our predictions to publicly available long-read sequencing data. OperonSEQer therefore improves on existing methods in terms of accuracy, flexibility, and adaptability.
This paper discusses the development and current status of a recommended practice by the members of IEEE Working Group P2688 on Energy Storage Management Systems (ESMS) in grid applications. The intent of this recommended practice is to provide a reference for ESMS designers and ESS integrators regarding the challenges in ESMS development and deployment, and to provide recommendations and best practices to address these challenges. This recommended practice will assist in the selection between design options by supplying the pros and cons for a range of technical solutions.