Publications

Results 8051–8075 of 99,299

Search results

Jump to search filters

Load Mitigating Feedback Control of WECs

Forbush, Dominic

This report outlines the development of load-mitigating feedback control for wave energy converters. A simple, self-tuning multi-objective controller is demonstrated in simulation for a 3-DOF (surge, heave, pitch) point absorber. In previous work, the proposed control architecture has been shown to be effective in experiment for a variety of device archetypes for the single objective of the maximization of electrical power capture: here this architecture is extended to reduce device loading as well. In particular, PTO actuation forces and the minimization of fatigue damage (determined from the sum of wave-exerted and PTO forces) are considered as additional objectives for the self-tuning controller. This controller is demonstrated for two similar, but distinct systems: one described by the identified linear models from physical testing of the WaveBot device, and another based upon a WEC-Sim simulation that expands upon boundary element method data from the WaveBot device. In both cases, because the power surface is consistently fairly flat in the vicinity of control parameters that maximize power capture in contrasting sea-states, it is found to be generally possible to mitigate either fatigue damage or PTO load. However, PTO load is found to conflict with fatigue damage in some sea-states, limiting the efficacy of control objectives that attempt to mitigate both simultaneously. Additionally, coupling between the surge and pitch DOFs also limits the extent to which fatigue damage can be mitigated for both DOFs in some sea-states. Because control objectives can be considered a function of the sea-state (e.g., load mitigation may not be a concern until the sea is sufficiently large) a simple transition strategy is proposed and demonstrated. This transition strategy is found to be effective with some caveats: firstly, it cannot circumvent the aforementioned objective contradictions. Secondly, this objective transition is too slow to act as a system constraint, and objective thresholds must thus be considered quite conservatively. Improvement of the adjustment strategy is demonstrated through the addition of an integral term. Selection of well-performing transition parameters can be a function of sea-state. While a simple selection procedure is proposed, it is non-optimal, and a more robust selection procedure is suggested for future work.

More Details

Ellipsoidal Fitting Methodology for Defect Clusters in Gallium Arsenide

Hehr, Brian D.

In assessing the initial spatial distribution of defects from neutron or heavy ion irradiation, it is useful to have a reliable, automated, and fast-running tool to evaluate characteristic metrics such as the number of sub-clusters or the overall cluster volume. The latter metric, for instance, can be utilized to estimate a reference neutron fluence level at which inter-cluster interaction effects begin to become significant. This paper details a methodology to fit an arbitrarily complex defect map with a set of ellipsoids (one per identified sub-cluster) in which the constituent defects of a sub-cluster are determined using fuzzy degree-of-membership analysis. Specifically, a parameterized model is developed for point defects in gallium arsenide. Cluster volume calculations based on the model are compared against convex hull and single- ellipsoid representations. Results show that the parameterized sub-cluster model begins to deviate from the two reference models at a recoil energy of about 100 keV in GaAs, with the convex hull and single-ellipsoid representations increasingly overestimating the volume thereafter.

More Details

Long-Term Stability of PVD/Sputtered Au Electrical Contacts to Thermoelectric Bi2Te2 (Re-evaluation of SAND2015-7203)

Sugar, Joshua D.; Bartelt, Norman C.; Sharma, Peter A.; Adams, David P.; Michael, Joseph R.

The fabrication of long-lived electrical contacts to thermoelectric Bi2Te3-based modules is a challenging problem due to chemical incompatibilities and rapid diffusion rates. Previously, technical guidance from SAND report 2015-7203 selected electroplated Au as the preferred method for fabrication of long-lived contacts because of concerns that the grain structure of sputtered/physical vapor deposited (PVD) Au contacts can evolve during aging. We have re-evaluated PVD Au contacts and show that they are appropriate for long-life service. We measure grain size and morphology at different aging times under accelerated temperature gradient conditions, and we show that the PVD Au contacts are stable and remain relatively unchanged. The PVD Au fabricated here is not subject to the deterioration observed in the previous report.

More Details
Results 8051–8075 of 99,299
Results 8051–8075 of 99,299