Capabilities of Sandia's STAR & DICE Facilities
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computer Graphics Forum
We show how to sample uniformly within the three-sided region bounded by a circle, a radial ray, and a tangent, called a “chock.” By dividing a 2D planar rectangle into a background grid, and subtracting Poisson disks from grid squares, we are able to represent the available region for samples exactly using triangles and chocks. Uniform random samples are generated from chock areas precisely without rejection sampling. This provides the first implemented algorithm for precise maximal Poisson-disk sampling in deterministic linear time. We prove O(n · M(b) log b), where n is the number of samples, b is the bits of numerical precision and M is the cost of multiplication. Prior methods have higher time complexity, take expected time, are non-maximal, and/or are not Poisson-disk distributions in the most precise mathematical sense. We fill this theoretical lacuna.
ERMA is leveraging Sandia’s Microgrid Design Toolkit (MDT) [1] and adding significant new features to it. Development of the MDT was primarily funded by the Department of Energy, Office of Electricity Microgrid Program with some significant support coming from the U.S. Marine Corps. The MDT is a software program that runs on a Microsoft Windows PC. It is an amalgamation of several other software capabilities developed at Sandia and subsequently specialized for the purpose of microgrid design. The software capabilities include the Technology Management Optimization (TMO) application for optimal trade-space exploration, the Microgrid Performance and Reliability Model (PRM) for simulation of microgrid operations, and the Microgrid Sizing Capability (MSC) for preliminary sizing studies of distributed energy resources in a microgrid.
Abstract not provided.
Abstract not provided.
The COVID-19 pandemic has forced many organizations—from national laboratories to private companies—to change their workforce model to incorporate remote work. This study and the summarized results sought to understand the experiences of remote workers and the ways that remote work can impact recruitment and retention, employee engagement, and career development. Sandia, like many companies, has committed to establishing a hybrid work model that will persist postpandemic, and more Sandia employees than ever before have initiated remote work agreements. This parallels the nationwide increase in remote employment and motivates this study on remote work as an enduring part of workforce models.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computational Materials Science
Thin-film coatings can be found everywhere in modern technological applications due to desirable electrical, mechanical, chemical, and optical properties. These properties directly depend upon the thin-film's microstructural features, which are themselves influenced by the materials and vapor-deposition processing conditions used for fabrication. As such, understanding processing-microstructure relationships is essential to designing thin-films with optimized properties, and discovering new processing conditions that allow for novel thin-films with multifunctional microstructures. Here, a short review is presented on recent developments that utilize the phase-field method to simultaneously model the vapor-deposition process and corresponding microstructure formation at the mesoscale. Phase-field-based vapor-deposition models that simulate thin-film growth of immiscible alloy and polycrystalline systems are highlighted in addition to machine-learning-based surrogate models that can facilitate accelerated high-fidelity simulations along with materials design and exploration studies.
Abstract not provided.
Polymer Testing
Solid state nuclear magnetic resonance (NMR) spectroscopy and small-to wide-angle X-ray scattering (SWAXS) methods were used to characterize the heterogeneous dynamics and polymer domain structure in rubber modified thermoset materials containing the diglycidyl ether of bisphenol A (DGEBA) epoxy resin and a mixture of Jeffamine reactive rubber and 4,4-diaminodicyclohexylmethane (PACM) amine curing agent. The polymer chain dynamics and morphologies as a function of the PACM/Jeffamine ratio were determined. Using dipolar-filtered NMR experiments, the resulting networks are shown to be composed of mobile and rigid regions that are separated on nanometer length scales, along with a dynamically immobilized interface region. Proton NMR spin diffusion experiments measured the dimensions of the mobile phase to range between 9 and 66 nm and varied with the relative PACM concentration. Solid state 13C magic angle spinning NMR experiments show that the highly mobile phase is composed entirely of the dynamically flexible polyether chains of the Jeffamine rubber, the immobilized interface region is a mixture of DGEBA, PACM, and the Jeffamine rubber, with the PACM cross-linked to DGEBA predominantly residing in the rigid phase. The SWAXS results showed compositional nanophase separation spanning the 11–77 nm range. These measurements of the nanoscale compositional and dynamic heterogeneity provide molecular level insight into the very broad and controllable glass transition temperature distributions observed for these highly cross-linked polymer networks.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
Electrochemical models at different scales and varying levels of complexity have been used in the literature to study the evolution of the anode surface in lithium metal batteries. This includes continuum, mesoscale (phase-field approaches), and multiscale models. Thermodynamics-based equations have been used to study phase changes in lithium batteries using phase-field approaches. However, grid convergence studies and the effect of additional parameters needed to simulate these models are not well-documented in the literature. In this paper, using a motivating example of a moving boundary model in one- and two-dimensions, we show how one can formulate phase-field models, implement algorithms for the same and analyze the results. An open-access code with no restrictions is provided as well. The article concludes with some thoughts on the computational efficiency of phase-field models for simulating dendritic growth.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.