Expansion Planning Tool Development & Analysis for Energy Storage & Decarbonization with the Public Service Company of New Mexico
Abstract not provided.
Abstract not provided.
Mechanics of Materials
The Lip-field approach was introduced in Moës and Chevaugeon (2021) as a new way to regularize softening material models. It was tested in 1D quasistatic in Moës and Chevaugeon (2021) and 2D quasistatic in Chevaugeon and Moës (2021): this paper extends it to 1D dynamics, on the challenging problem of dynamic fragmentation. The Lip-field approach formulates the mechanical problem to be solved as an optimization problem, where the incremental potential to be minimized is the non-regularized one. Spurious localization is prevented by imposing a Lipschitz constraint on the damage field. The displacement and damage field at each time step are obtained by a staggered algorithm, that is the displacement field is computed for a fixed damage field, then the damage field is computed for a fixed displacement field. Indeed, these two problems are convex, which is not the case of the global problem where the displacement and damage fields are sought at the same time. The incremental potential is obtained by equivalence with a cohesive zone model, which makes material parameters calibration simple. A non-regularized local damage equivalent to a cohesive zone model is also proposed. It is used as a reference for the Lip-field approach, without the need to implement displacement jumps. These approaches are applied to the brittle fragmentation of a 1D bar with randomly perturbed material properties to accelerate spatial convergence. Both explicit and implicit dynamic implementations are compared. Favorable comparison to several analytical, numerical and experimental references serves to validate the modeling approach.
Abstract not provided.
Power spectrum analysis (PSA) is a fast, non-destructive, sensitive method for examining commercial off-the-shelf ( COTS ) electronic components. These features make PSA attractive for both component screening and surveillance in support of component reliability efforts. Current analysis methods limit the utility of PSA due to the need to manually examine the results of analysis to identify anomalous parts. This study demonstrates the development and application of a workflow to automate the screening of COTS electronic components. Further, this study demonstrates the use of multivariate algorithms to assess aging of Zener diodes. These workflows can be readily extended to other components, combining the benefits of PSA and multivariate analysis to screen and evaluate COTS electronic components.
Multiple physical and chemical forms of a given radionuclide may be released in the event of a nuclear accident. Given that variable forms of an isotope may elicit changes in how that isotope moves through the environment and ultimately impacts human receptors, it is pertinent to understand how nuclear accident consequence models, such as MACCS, account for variable forms. This report documents a review of MACCS modeling capabilities for variability in radionuclide chemical and physical forms. This review centers on the current state-of-practice for dosimetry and deposition modeling of varying radionuclide forms to understand how consistent existing MACCS capabilities are with state of practice. This analysis is also used to inform potential MACCS model upgrades. MACCS conceptual models along with dosimetry and deposition related practices are discussed. Recommendations and suggestions for model improvements are posited.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Energies
A global transition to power grids with high penetrations of renewable energy generation is being driven in part by rapid installations of distributed energy resources (DER). New DER equipment includes standardized IEEE 1547-2018 communication interfaces and proprietary communications capabilities. Interoperable DER provides new monitoring and control capabilities. The existence of multiple entities with different roles and responsibilities within the DER ecosystem makes the Access Control (AC) mechanism necessary. In this paper, we introduce and compare two novel architectures, which provide a Role-Based Access Control (RBAC) service to the DER ecosystem’s entities. Selecting an appropriate RBAC technology is important for the RBAC administrator and users who request DER access authorization. The first architecture is centralized, based on the OpenLDAP, an open source implementation of the Lightweight Directory Access Protocol (LDAP). The second approach is decentralized, based on a private Ethereum blockchain test network, where the RBAC model is stored and efficiently retrieved via the utilization of a single Smart Contract. We have implemented two end-to-end Proofs-of-Concept (PoC), respectively, to offer the RBAC service to the DER entities as web applications. Finally, an evaluation of the two approaches is presented, highlighting the key speed, cost, usability, and security features.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This project was broadly motivated by the need for new hardware that can process information such as images and sounds right at the point of where the information is sensed (e.g. edge computing). The project was further motivated by recent discoveries by group demonstrating that while certain organic polymer blends can be used to fabricate elements of such hardware, the need to mix ionic and electronic conducting phases imposed limits on performance, dimensional scalability and the degree of fundamental understanding of how such devices operated. As an alternative to blended polymers containing distinct ionic and electronic conducting phases, in this LDRD project we have discovered that a family of mixed valence coordination compounds called Prussian blue analogue (PBAs), with an open framework structure and ability to conduct both ionic and electronic charge, can be used for inkjet-printed flexible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. Retention of programmed states is improved by nearly two orders of magnitude compared to the extensively studied organic polymers, thus enabling in-memory compute and avoiding energy costly off-chip access during training. We demonstrate dopamine detection using PBA synapses and biocompatibility with living neurons, evoking prospective application for brain - computer interfacing. By application of electron transfer theory to in-situ spectroscopic probing of intervalence charge transfer, we elucidate a switching mechanism whereby the degree of mixed valency between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory (DFT) .
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIChE Journal
Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.
Abstract not provided.
Abstract not provided.
Grid scale batteries need to be inexpensive to manufacture, safe to operate, and non-toxic in composition. Zinc aqueous (alkaline) batteries hold much promise, but good cycle life and utilization of the zinc has proven difficult partly because zinc is susceptible to H2 gas evolution in KOH. Water-insalt electrolyte (WiSE) can address this shortcoming by lowering the activity of free water molecules in solution, thus reducing H2 gas evolution. In this work, we show the relevant fundamental physicochemical properties of an acetate-based WiSE to establish the practicality and performance of this class of WiSE for battery application. Research and understanding of acetate WiSE is in a nascent state, presently.
Abstract not provided.