Publications

Results 89576–89600 of 99,299

Search results

Jump to search filters

Green Zia Application Sandia National Laboratories' Neutron Generator Production Facility

Saad, Max P.; Mclaughlin, Anastasia D.

The Green Zia Environmental Excellence Program is a voluntary program designed to support and assist all New Mexico businesses to achieve environmental excellence through continuous improvement and effective energy management. The program encourages integration of environmental excellence into business operations and management practices through the establishment of a prevention-based environmental management system. The Neutron Generator Production Facility has participated in the Green Zia Environmental Excellence Program for two years. This document is the submittal application for inclusion in the 2003 Green Zia program year.

More Details

Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion

Lin, Shawn-Yu; Fleming, J.G.; Moreno, Joseph A.

Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

More Details

MEMS conformal electrode array for retinal implant

Stein, David J.; Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.; Lemp, Thomas; Shul, Randy J.; Baker, Michael S.; James, Conrad D.; Myers, Ramona L.

Retinal prosthesis projects around the world have been pursuing a functional replacement system for patients with retinal degeneration. In this paper, the concept for a micromachined conformal electrode array is outlined. Individual electrodes are designed to float on micromachined springs on a substrate that will enable the adjustment of spring constants-and therefore contact force-by adjusting the dimensions of the springs at each electrode. This also allows the accommodation of the varying curvature/topography of the retina. We believe that this approach provides several advantages by improving the electrode/tissue interface as well as generating some new options for in-situ measurements and overall system design.

More Details

Status and Integrated Road-Map for Joints Modeling Research

Segalman, Daniel J.; Smallwood, David O.; Sumali, Hartono (Anton); Paez, Thomas L.; Urbina, Angel U.

The constitutive behavior of mechanical joints is largely responsible for the energy dissipation and vibration damping in weapons systems. For reasons arising from the dramatically different length scales associated with those dissipative mechanisms and the length scales characteristic of the overall structure, this physics cannot be captured adequately through direct simulation of the contact mechanics within a structural dynamics analysis. The only practical method for accommodating the nonlinear nature of joint mechanisms within structural dynamic analysis is through constitutive models employing degrees of freedom natural to the scale of structural dynamics. This document discusses a road-map for developing such constitutive models.

More Details

Structural variations of potassium aryloxides

Proposed for publication in Inorganic Chemistry.

Boyle, Timothy; Andrews, Nicholas L.; Rodriguez, Mark A.

A series of potassium aryloxides (KOAr) were isolated from the reaction of a potassium amide (KN(SiMe3)2) and the desired substituted phenoxide (oMP, 2-methyl; oPP, 2-iso-propyl; oBP, 2-tert-butyl; DMP, 2,6-di-methyl; DIP, 2,6-di-iso-propyl; DBP, 2,6-di-tert-butyl) in tetrahydrofuran (THF) or pyridine (py) as the following: {l_brace}([K(4-oMP)(THF)][K(3-oMP)])5{r_brace} (1), {l_brace}[K6(6,3-oMP)4(6,4-oMP)2(py)4] {center_dot} [K6(6,3-oMP)6(6-py)4]{r_brace} (2), [K(3-oPP)]4(THF)3 (3), {l_brace}K4(6,3-oPP)2(3-oPP)2(py)3{r_brace} (4), [K(3-oBP)(THF)]6 (5), {l_brace}K6(6,3-oBP)2(3-oBP)4(py)4{r_brace} (6), {l_brace}K3(6,3-DMP)2(-DMP)(THF){r_brace} (7), {l_brace}[K(6,-DMP)(py)]2{r_brace} (8), {l_brace}K(6,-DIP){r_brace} (9), {l_brace}K(6,-DBP){r_brace} (10). Further exploration of the aryl interactions led to the investigation of the diphenylethoxide (DPE) derivative which was isolated as [K(3-DPE)(THF)]4 (11) or [K(3-DPE)(py)]4 {center_dot} py2 (12) depending on the solvent used. In general, the less sterically demanding ligands (oMP, oPP, oBP, and DMP) were solvated polymeric species; however, increasing the steric bulk (DIP and DBP) led to unsolvated polymers and not discrete molecules. For most of this novel family of compounds, the K atoms were -bound to the aryl rings of the neighboring phenoxide derivatives to fill their coordination sites. The synthesis and characterization of these compounds are described in detail.

More Details

Growth and morphology of cadmium chalcogenides : the synthesis of nanorods, tetrapods, and spheres from CdO and Cd(O[2]CCH[3])[2]

Proposed for publication in the Journal of Chemistry and Materials.

Bunge, Scott D.; Boyle, Timothy; Rodriguez, Mark A.; Headley, Thomas J.

In this work, we investigated the controlled growth of nanocrystalline CdE (E = S, Se, and Te) via the pyrolysis of CdO and Cd(O2CCH3)2 precursors, at the specific Cd to E mole ratio of 0.67 to 1. The experimental results reveal that while the growth of CdS produces only a spherical morphology, CdSe and CdTe exhibit rod-like and tetrapod-like morphologies of temporally controllable aspect ratios. Over a 7200 s time period, CdS spheres grew from 4 nm (15 s aliquot) to 5 nm, CdSe nanorods grew from dimensions of 10.8 x 3.6 nm (15 s aliquot) to 25.7 x 11.2 nm, and CdTe tetrapods with arms 15 x 3.5 nm (15 s aliquot) grew into a polydisperse mixture of spheres, rods, and tetrapods on the order of 20 to 80 nm. Interestingly, long tracks of self-assembled CdSe nanorods (3.5 x 24 nm) of over one micron in length were observed. The temporal growth for each nanocrystalline material was monitored by UV-VIS spectroscopy, transmission electron spectroscopy, and further characterized by powder X-ray diffraction. This study has elucidated the vastly different morphologies available for CdS, CdSe, and CdTe during the first 7200 s after injection of the desired chalcogenide.

More Details

X-ray absorption spectroscopy to probe interfacial issues in photolithography

Proposed for publication in Langmuir.

Lenhart, Joseph L.

We utilize near edge X-ray absorption fine structure spectroscopy (NEXASFS) to provide detailed chemical insight into two interfacial problems facing sub-100 nm patterning. First, chemically amplified photo-resists are sensitive to surface phenomenon, which causes deviations in the pattern profile near the interface. Striking examples include T-topping, closure, footing, and undercutting. NEXAFS was used to examine surface segregation of a photo-acid generator at the resist/air interface and to illustrate that the surface extent of deprotection in a model resist film can be different than the bulk extent of deprotection. Second, line edge roughness becomes increasingly critical with shrinking patterns, and may be intimately related to the line edge deprotection profile. A NEXAFS technique to surface depth profile for compositional gradients is described with the potential to provide chemical information about the resist line edge.

More Details

The effects of chloride implantation on pit initiation in aluminum

Proposed for publication in the Journal of the Electrochemical Society.

Wall, Frederick D.; Johnson, Craig M.; Barbour, J.C.; Martinez, Michael A.

High-purity aluminum samples were implanted with 35 keV Cl{sup +} then polarized in both Cl{sup -}-containing and Cl{sup -}-free electrolytes in order to ascertain corrosion behavior as a function of Cl{sup -} content in the oxide. Implant fluence between 5 x 10{sup 15} and 2 x 10{sup 16} Cl{sup +} cm{sup -2} resulted in little or no localized attack. Implant fluences of 3 x 10{sup 16} and 5 x 10{sup 16} Cl{sup +} cm{sup -2} resulted in significant pitting in a Cl{sup -}-free electrolyte with the severity scaling as a function of implant fluence. The low variability in the pitting behavior of the 5 x 10{sup 16} Cl{sup +} cm{sup -2} sample suggests that this implant dosage results in a critical Cl{sup -} concentration in the oxide for pit nucleation. The passive current density (i{sub pass}) decreased with increasing implant fluence. A space-charge effect is proposed to account for this phenomenon, although effects from defect interactions and possible oxide thickening are still under consideration.

More Details

Coding theory based models for protein translation initiation in prokaryotic organisms

May, Elebeoba

Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5' untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5' untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine-Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.

More Details

Design and Testing of a Micro Thermal Conductivity Detector (TCD) System

Horschel, Daniel S.; Einfeld, Wayne E.; Showalter, Steven K.; Cruz, Dolores Y.; Gelbard, Fred M.; Manginell, Ronald; Adkins, Douglas R.; Kottenstette, Richard J.; Rawlinson, Kim S.; Dulleck Jr., George R.

This work describes the design, simulation, fabrication and characterization of a microfabricated thermal conductivity detector to be used as an extension of the {micro}ChemLab{trademark}. The device geometry was optimized by simulating the heat transfer in the device, utilizing a boundary element algorithm. In particular it is shown that within microfabrication constraints, a micro-TCD optimized for sensitivity can be readily calculated. Two flow patterns were proposed and were subsequently fabricated into nine-promising geometries. The microfabricated detector consists of a slender metal film, supported by a suspended thin dielectric film over a pyramidal or trapezoidal silicon channel. It was demonstrated that the perpendicular flow, where the gas directly impinges on the membrane, creates a device that is 3 times more sensitive than the parallel flow, where the gas passed over the membrane. This resulted in validation of the functionality of a microfabricated TCD as a trace-level detector, utilizing low power. the detector shows a consistent linear response to concentration and they are easily able to detect 100-ppm levels of CO in He. Comparison of noise levels for this analysis indicates that sub part per million (ppm) levels are achievable with the selection of the right set of conditions for the detector to operate under. This detector was originally proposed as part of a high-speed detection system for the petrochemical gas industry. This system was to be utilized as a process monitor to detect reactor ''upset'' conditions before a run away condition could occur (faster than current full-scale monitoring systems were able to achieve). Further outlining of requirements indicated that the detection levels likely achievable with a TCD detector would not be sufficient to meet the process condition needs. Therefore the designed and fabricated detector was integrated into a detection system to showcase some technologies that could further the development of components for the current gas phase {micro}ChemLab as well as future modifications for process monitoring work such as: pressurized connections, gas sampling procedures, and packed columns. Component integration of a microfabricated planar pre-concentrator, gas-chromatograph column and TCD in the separation/detection of hydrocarbons, such as benzene, toluene and xylene (BTX) was also demonstrated with this system.

More Details

Length scaling of dynamic-hohlraum axial radiation

Proposed for publication in Physics of Plasmas.

Sanford, Thomas W.L.; Mock, Raymond; Slutz, Stephen A.

Radiation generated within a 10-mm-long foam-target DH (dynamic hohlraum) is used for high-temperature (<200 eV) radiation-flow and inertial-confinement-fusion studies [Sanford et al., Phys. Plasmas 9, 3573 (2002)]. The length of this DH is varied from 5 to 20 mm, keeping the mass/unit length constant in an effort to study the scaling of axial radiation power with length, and better understand its production. Measurements show a greater variation in this power with length than would be expected from simple arguments [Slutz et al., Phys. Plasmas 8, 1673 (2001)]. Maximum axial power of {approx}10 TW is produced with a length of {approx}7.5 mm, similar to the typical power for the baseline 10 mm DH. The decreasing axial power (at a rate of {approx}0.65 TW per mm at longer lengths) is bounded by radiation-magnetohydrodynamic simulations [Peterson et al., Phys. Plasmas 6, 2178 (1999)] that include the development of the magnetic Rayleigh-Taylor instability in the r-z plane. The dramatic drop in axial power below 7.5 mm, by contrast, was unanticipated. This decrease suggests the presence of differing mechanisms for limiting power at short and long lengths.

More Details

An informative confidence metric for ATR

Richards, John A.; Bow, Wallace J.; Bray, Brian

Automatic or assisted target recognition (ATR) is an important application of synthetic aperture radar (SAR). Most ATR researchers have focused on the core problem of declaration-that is, detection and identification of targets of interest within a SAR image. For ATR declarations to be of maximum value to an image analyst, however, it is essential that each declaration be accompanied by a reliability estimate or confidence metric. Unfortunately, the need for a clear and informative confidence metric for ATR has generally been overlooked or ignored. We propose a framework and methodology for evaluating the confidence in an ATR system's declarations and competing target hypotheses. Our proposed confidence metric is intuitive, informative, and applicable to a broad class of ATRs. We demonstrate that seemingly similar ATRs may differ fundamentally in the ability-or inability-to identify targets with high confidence.

More Details
Results 89576–89600 of 99,299
Results 89576–89600 of 99,299