Publications

Results 89301–89350 of 99,299

Search results

Jump to search filters

Synthesis of highly magnetic iron nanoparticles suitable for field-structuring using a b-diketone surfactant

Proposed for publication in Nano Letters.

Huber, Dale L.; Venturini, Eugene L.; Martin, James E.; Provencio, P.N.

We describe the synthesis of highly magnetic iron nanoparticles using a novel surfactant, a {beta}-diketone. We have produced 6 nm iron nanoparticles with an unusually high saturation magnetization of more than 80% the value of bulk iron. Additionally, we measured a particle susceptibility of 14 (MKS units), which is far above the value possible for micron-scale spherical particles. These properties will allow for formation of composites that can be highly structured by magnetic fields.

More Details

Focused ion beam milling of diamond : effects of H2O on yield, surface morphology and microstructure

Proposed for publication in the Journal of Vacuum Science and Technology B.

Adams, David P.; Vasile, Michael J.; Mayer, Thomas M.; Hodges, V.C.

The effects of H{sub 2}O vapor introduced during focused ion beam (FIB) milling of diamond(100) are examined. In particular, we determine the yield, surface morphology, and microstructural damage that results from FIB sputtering and H{sub 2}O-assisted FIB milling processes. Experiments involving 20 keV Ga{sup +} bombardment to doses {approx}10{sup 18} ions/cm{sup 2} are conducted at a number of fixed ion incidence angles, {theta}. For each {theta} selected, H{sub 2}O-assisted ion milling shows an increased material removal rate compared with FIB sputtering (no gas assist). The amount by which the yield is enhanced depends on the angle of incidence with the largest difference occurring at {theta} = 75{sup o}. Experiments that vary pixel dwell time from 3 {micro}s to 20 ms while maintaining a fixed H{sub 2}O gas pressure demonstrate the additional effect of beam scan rate on yield for gas-assisted processes. Different surface morphologies develop during ion bombardment depending on the angle of ion incidence and the presence/absence of H{sub 2}O. In general, a single mode of ripples having a wave vector aligned with the projection of the ion beam vector forms for {theta} as high as 70{sup o}. H{sub 2}O affects this morphology by lowering the ripple onset angle and decreasing the ripple wavelength. At high angles of incidence ({theta} > 70{sup o}) a step/terrace morphology is observed. H{sub 2}O-assisted milling at {theta} > 70{sup o} results in a smoother stepped surface compared with FIB sputtering. Transmission electron microscopy shows that the amorphized thickness is reduced by 20% when using H{sub 2}O-assisted FIB milling.

More Details

Magnetic response of dilute cobalt nanoparticles in an organic matrix : the effects of aging and interface chemistry

Proposed for publication in Physical Review Letters.

Wilcoxon, Jess P.; Venturini, Eugene L.; Provencio, P.N.

We report studies of the magnetic response of dilute frozen solutions of nanocrystalline Co particles grown in inverse micelles. Crystalline nanoclusters which initially exhibit only a small fraction of the bulk saturation moment restructure in solution without any change in cluster size or blocking temperature over a period of {approx}30-60 days, finally yielding a moment/atom which exceeds that of bulk Co. The saturation magnetism maintains its enhanced value for temperatures up to the melting point of the solvent matrix, but is strongly dependent on surface active additives and molecular oxygen.

More Details

Nature of the parasitic chemistry during AlGaInN OMVPE

Proposed for publication in Journal of Crystal Growth.

Creighton, James R.; Wang, George T.; Breiland, William G.; Coltrin, Michael E.

Using in situ laser light scattering, we have observed gas-phase nanoparticles formed during AlN, GaN and InN OMVPE. The response of the scattering intensity to a wide range of conditions indicates that the AlN parasitic chemistry is considerably different from the corresponding GaN and InN chemistry. A simple CVD particle-growth mechanism is introduced that can qualitatively explain the observed particle size and yields a strong residence time dependence. We also used FTIR to directly examine the reactivity of the metalorganic precursors with NH{sub 3} in the 25-300 C range. For trimethylaluminum/NH{sub 3} mixtures a facile CH{sub 4} elimination reaction is observed, which also produces gas-phase aminodimethylalane, i.e. Al(CH{sub 3}){sub 2}NH{sub 2}. For trimethylgallium and trimethylindium the dominant reaction is reversible adduct formation. All of the results indicate that the AlN particle-nucleation mechanism is predominately of a concerted nature, while the GaN and InN particle-nucleation mechanisms involve homogeneous pyrolysis and radical chemistry.

More Details

BaO/W(100) thermionic emitters and the effects of Sc, Y, La, and the density functional used in computations

Proposed for publication in Surface Science Letters.

Jennison, Dwight R.; Schultz, Peter A.; King, Donald B.; Zavadil, Kevin R.

Density functional theory is used to predict workfunctions, {psi}. For relaxed clean W(1 0 0), the local density approximation (LDA) agrees with experiment better than the newer generalized gradient approximation, probably due to the surface electron self-energy. The large Ba metallic radius indicates it covers W(1 0 0) at about 0.5 monolayer (ML). However, Ba{sup 2+}, O{sup 2-}, and metallic W all have similar radii. Thus 1 ML of BaO (one BaO unit for each two W atoms) produces minimum strain, indicating commensurate interfaces. BaO (1 ML) and Ba (1/2 ML) have the same {psi} to within 0.02 V, so at these coverages reduction or oxidation is not important. Due to greater chemical activity of ScO vs. highly ionic BaO, when mixing the latter with this suboxide of scandia, the overlayer always has BaO as the top layer and ScO as the second layer. The BaO/ScO bilayer has a rocksalt structure, suggesting high stability. In the series BaO/ScO/, BaO/YO/, and BaO/LaO/W(1 0 0), the latter has a remarkably low {psi} of 1.3 V (LDA), but 2 ML of rocksalt BaO also has {psi} at 1.3 V. We suggest BaO (1 ML) does not exist and that it is worthwhile to attempt the direct synthesis and study of BaO (2 ML) and BaO/LaO.

More Details

Equilibration of long chain polymer melts in computer simulations

Proposed for publication in Journal of Chemical Physics.

Grest, Gary S.; Plimpton, Steven J.

Several methods for preparing well equilibrated melts of long chains polymers are studied. We show that the standard method in which one starts with an ensemble of chains with the correct end-to-end distance arranged randomly in the simulation cell and introduces the excluded volume rapidly, leads to deformation on short length scales. This deformation is strongest for long chains and relaxes only after the chains have moved their own size. Two methods are shown to overcome this local deformation of the chains. One method is to first pre-pack the Gaussian chains, which reduces the density fluctuations in the system, followed by a gradual introduction of the excluded volume. The second method is a double-bridging algorithm in which new bonds are formed across a pair of chains, creating two new chains each substantially different from the original. We demonstrate the effectiveness of these methods for a linear bead spring polymer model with both zero and nonzero bending stiffness, however the methods are applicable to more complex architectures such as branched and star polymer.

More Details

Influence of ambient on hydrogen release from p-type gallium nitride

Proposed for publication in Journal of Applied Physics.

Myers, Samuel M.; Vaandrager, Bastiaan L.; Wampler, William R.; Seager, Carleton H.

Mechanisms of H release from Mg-doped, p-type GaN were investigated in vacuum, in N{sub 2} and O{sub 2} gases, and in electron-cyclotron-resonance N{sub 2} plasmas. Replacing grown-in protium with deuterium (D) and employing sensitive nuclear-reaction analysis allowed the retained concentration to be followed quantitatively over two decades during isothermal heating, illuminating the kinetics of controlling processes. Oxidation attending the O{sub 2} exposures was monitored through nuclear-reaction analysis of {sup 18}O. N{sub 2} gas at atmospheric pressure increases the rate of D release appreciably relative to vacuum. The acceleration produced by O{sub 2} gas is much greater, but is diminished in later stages of the release by oxidation. The N{sub 2} plasma employed in these studies had no resolvable effect. We argue that surface desorption is rate controlling in the D release, and that it occurs by D-D recombination and the formation of N-D and O-D species. Our results are quantitatively consistent with a theoretical model wherein the bulk solution is in equilibrium with surface states from which desorption occurs by processes that are both first and second order in surface coverage.

More Details

Configurations, energies, and thermodynamics of the neutral MgH complex in GaN

Proposed for publication in Journal of Applied Physics.

Wright, Alan F.; Myers, Samuel M.

Atomic configurations corresponding to local-energy minima for the neutral MgH complex in wurtzite GaN are identified using density-functional theory and the generalized-gradient approximation for exchange and correlation. MgH binding energies, H local-mode vibration frequencies, and configurational degeneracies for the six lowest-energy configurations are used, along with corresponding results for isolated H{sup +}, to compute equilibrium H state populations in Mg-doped GaN as a function of temperature. For a Mg concentration of 1 x 10{sup 19}/cm{sup 3} and a H/Mg concentration ratio of 0.99, MgH is found to be the majority H species at room temperature with isolated H{sup +} becoming the majority species at T {approx} 550 C. Among the MgH states, one is found to dominate at all temperatures. The dominant configuration consists of H at an antibonding site of a N neighbor of the substitutional Mg, with the Mg-N and N-H bonds nearly aligned and the N-H bond oriented at an angle of -109{sup o} with the c axis. The H stretch-mode frequency of the dominant state is consistent with the peak observed in Fourier-transform infrared reflection spectra from Mg-doped GaN samples.

More Details

Design, construction, characterization, and application of a hyperspectral microarray scanner

Proposed for publication in Applied Optics.

Sinclair, Michael B.; Timlin, Jerilyn A.; Haaland, David M.; Werner-Washburne, Margaret C.

We describe the design, construction, and operation of a hyperspectral microarray scanner for functional genomic research. The hyperspectral instrument operates with spatial resolutions ranging from 3 to 30 {micro}m and records the emission spectrum between 490 and 900 nm with a spectral resolution of 3 nm for each pixel of the microarray. This spectral information, when coupled with multivariate data analysis techniques, allows for identification and elimination of unwanted artifacts and greatly improves the accuracy of microarray experiments. Microarray results presented in this study clearly demonstrate the separation of fluorescent label emission from the spectrally overlapping emission due to the underlying glass substrate. We also demonstrate separation of the emission due to green fluorescent protein expressed by yeast cells from the spectrally overlapping autofluorescence of the yeast cells and the growth media.

More Details

Comparisons of prediction abilities of augmented classical least squares and partial least squares with realistic simulated data : effects of uncorrelated and correlated errors with nonlinearities

Proposed for publication in Applied Spectroscopy.

Melgaard, David K.; Haaland, David M.

A manuscript describing this work summarized below has been submitted to Applied Spectroscopy. Comparisons of prediction models from the new ACLS and PLS multivariate spectral analysis methods were conducted using simulated data with deviations from the idealized model. Simulated uncorrelated concentration errors, and uncorrelated and correlated spectral noise were included to evaluate the methods on situations representative of experimental data. The simulations were based on pure spectral components derived from real near-infrared spectra of multicomponent dilute aqueous solutions containing glucose, urea, ethanol, and NaCl in the concentration range from 0-500 mg/dL. The statistical significance of differences was evaluated using the Wilcoxon signed rank test. The prediction abilities with nonlinearities present were similar for both calibration methods although concentration noise, number of samples, and spectral noise distribution sometimes affected one method more than the other. In the case of ideal errors and in the presence of nonlinear spectral responses, the differences between the standard error of predictions of the two methods were sometimes statistically significant, but the differences were always small in magnitude. Importantly, SRACLS was found to be competitive with PLS when component concentrations were only known for a single component. Thus, SRACLS has a distinct advantage over standard CLS methods that require that all spectral components be included in the model. In contrast to simulations with ideal error, SRACLS often generated models with superior prediction performance relative to PLS when the simulations were more realistic and included either non-uniform errors and/or correlated errors. Since the generalized ACLS algorithm is compatible with the PACLS method that allows rapid updating of models during prediction, the powerful combination of PACLS with ACLS is very promising for rapidly maintaining and transferring models for system drift, spectrometer differences, and unmodeled components without the need for recalibration. The comparisons under different noise assumptions in the simulations obtained during this investigation emphasize the need to use realistic simulations when making comparisons between various multivariate calibration methods. Clearly, the conclusions of the relative performance of various methods were found to be dependent on how realistic the spectral errors were in the simulated data. Results demonstrating the simplicity and power of ACLS relative to PLS are presented in the following section.

More Details

Analysis of myoglobin adsorption to Cu(II)-IDA functionalized Langmuir monolayers by grazing incidence neutron and x-ray techniques

Proposed for publication in Biophysical Journal.

Kent, Michael S.; Yim, Hyun Y.; Sasaki, Darryl Y.

The adsorption of myoglobin to Langmuir monolayers of a metal-chelating lipid in crystalline phase was studied using neutron and X-ray reflectivity (NR and XR) and grazing incidence X-ray diffraction (GIXD). In this system, adsorption is due to the interaction between chelated divalent copper or nickel ions and the histidine moieties at the outer surface of the protein. The binding interaction of histidine with the Ni-IDA complex is known to be much weaker than that with Cu-IDA. Adsorption was examined under conditions of constant surface area with an initial pressure of 40 mN/m. After {approx}12 h little further change in reflectivity was detected, although the surface pressure continued to slowly increase. For chelated Cu{sup 2+} ions, the adsorbed layer structure in the final state was examined for bulk myoglobin concentrations of 0.10 and 10 {micro}M. For the case of 10 {micro}M, the final layer thickness was {approx}43 {angstrom}. This corresponds well to the two thicker dimensions of myoglobin in the native state (44 {angstrom} x 44 {angstrom} x 25 {angstrom}) and so is consistent with an end-on orientation for this disk-shaped protein at high packing density. However, the final average volume fraction of amino acid segments in the layer was 0.55, which is substantially greater than the value of 0.44 calculated for a completed monolayer from the crystal structure. This suggests an alternative interpretation based on denaturation. GIXD was used to follow the effect of protein binding on the crystalline packing of the lipids and to check for crystallinity within the layer of adsorbed myoglobin. Despite the strong adsorption of myoglobin, very little change was observed in the structure of the DSIDA film. There was no direct evidence in the XR or GIXD for peptide insertion into the lipid tail region. Also, no evidence for in-plane crystallinity within the adsorbed layer of myoglobin was observed. For 0.1 {micro}M bulk myoglobin concentration, the average segment volume fraction was only 0.13 and the layer thickness was {le} 25 {angstrom}. Adsorption of myoglobin to DSIDA-loaded with Ni{sup 2+} was examined at bulk concentrations of 10 and 50 {micro}M. At 10 {micro}M myoglobin, the adsorbed amount was comparable to that obtained for adsorption to Cu{sup 2+}-loaded DSIDA monolayers at 0.1 {micro}M. But interestingly, the adsorbed layer thickness was 38 {angstrom}, substantially greater than that obtained at low coverage with Cu-IDA. This indicates that either there are different preferred orientations for isolated myoglobin molecules adsorbed to Cu-IDA and Ni-IDA monolayer films or else myoglobin denatures to a different extent in the two cases. Either interpretation can be explained by the very different binding energies for individual interactions in the two cases. At 50 {micro}M myoglobin, the thickness and segement volume fraction in the adsorbed layer for Ni-IDA were comparable to the values obtained with Cu-IDA at 10 {micro}M myoglobin.

More Details

Nonlinear adaptive control for slewing flexible active structures

Proposed for publication in AIAA Journal of Guidance, Control and Dynamics.

Wilson, David G.; Robinett, Rush D.

The development of lightweight flexible structures that include both advanced control and active material will impact several space application areas. One way to reduce vibration is the combination of advanced control methods such as nonlinear adaptive control plus active structure technology. Active structures with both sensors and actuators, strategically placed along the structure, can suppress vibrations and enhance slewing performance. Active vibration suppression is accomplished with a graphite/epoxy composite structure that includes embedded strain sensors and actuators.

More Details

Giant magnetic susceptibility enhancement in field-structured dipolar nanocomposites

Proposed for publication in Physical Review B.

Martin, James E.; Venturini, Eugene L.; Huber, Dale L.

We demonstrate through experiment and simulation that when mono-domain Fe nanoparticles are formed into chains by the application of a magnetic field, the susceptibility of the resulting structure is greatly enhanced (11.4-fold) parallel to the particle chains and is much larger than transverse to the chains. Simulations show that this significant enhancement is expected when the susceptibility of the individual particles approaches 5 in MKS units, and is due to the spontaneous magnetization of individual particle chains, which occurs because of the strong dipolar interactions. This large enhancement is only possible with nanoparticles, because demagnetization fields limit the susceptibility of a spherical multi-domain particle to 3 (MKS). Experimental confirmation of the large susceptibility enhancement is presented, and both the enhancement and the susceptibility anisotropy are found to agree with simulation. The specific susceptibility of the nanocomposite is 54 (MKS), which exceeds the highest value we have obtained for field-structured composites of multi-domain particles by a factor of four.

More Details

Monolithically-integrated MicroChemLab for gas-phase chemical analysis

Shul, Randy J.; Manginell, Ronald; Okandan, Murat; Kottenstette, Richard J.; Lewis, Patrick R.; Adkins, Douglas R.; Bauer, Joseph M.; Sokolowski, Sara S.

Sandia National Labs has developed an autonomous, hand-held system for sensitive/selective detection of gas-phase chemicals. Through the sequential connection of microfabricated preconcentrators (PC), gas chromatography columns (GC) and a surface acoustic wave (SAW) detector arrays, the MicroChemLab{trademark} system is capable of selective and sensitive chemical detection in real-world environments. To date, interconnection of these key components has primarily been achieved in a hybrid fashion on a circuit board modified to include fluidic connections. The monolithic integration of the PC and GC with a silicon-based acoustic detector is the subject of this work.

More Details

Ion beam analysis for fusion energy research

Wampler, William R.

Proposed next-step devices for development of fusion energy present a major increase in the energy content and duration of plasmas far beyond those encountered in existing machines. This increases the importance of controlling interactions between the fusion plasma and first-wall materials. These interactions change the wall materials and strongly affect the core plasma conditions. Two critical processes are the erosion of materials by the plasma, and the redeposition of eroded material along with hydrogen isotopes from the plasma. These impact reactor design through the lifetime of plasma-facing components and the inventory of tritium retained inside the vessel. Ion beam analysis has been widely used to investigate these complex plasma-material interactions in most of the large fusion plasma experiments. The design and choice of plasma-facing materials for next-step machines rely on knowledge obtained from these studies. This paper reviews the use of ion beam analysis for fusion energy research, and shows how these studies have helped to guide the design and selection of materials for a next-step machine.

More Details

Adsorption of small molecules in LTA-type zeolites : 1. NH3, CO2, and H2O in zeolite 4A

Proposed for publication in the Journal of Physical Chemistry B.

Chandross, Michael E.; Jaramillo, Eugenio; Modine, Normand A.

We have developed force fields for the calculation of adsorption of NH{sub 3}, CO{sub 2}, and H{sub 2}O on zeolite 4A by performing Gibbs ensemble Monte Carlo simulations to fit experimental isotherms at 298 K. The calculated NH{sub 3} and CO{sub 2} isotherms are in excellent agreement with experimental data over a wide range of temperatures and several orders of magnitude in pressure. We have calculated isotherms for H{sub 2}O in 4A using two different models and have found that H{sub 2}O saturates zeolite 4A even at pressures as low as 0.01 kPa for the range of temperatures studied. We have studied the geometry of the adsorption sites and their dependence on loading. At low pressures, CO{sub 2} molecules adsorb with their longitudinal axis pointing toward the center of the supercage, whereas at higher pressures, the two oxygen atoms are equidistant from the Na atom in the binding site.

More Details

Use of Classical Least Squares/Partial Least Squares (CLS/PLS) hybrid algorithm for calibration and calibration maintenance of Surface Acoustic Wave (SAW) devices

Proposed for publication in Sensors and Actuators B.

Rivera, Dion A.; Alam, Kathleen M.; Yelton, W.G.; Staton, Alan W.; Simonson, Robert J.

Many data analysis algorithms that are currently employed in SAW sensors lack the ability to easily maintain calibration models in the presence of unmodeled interferents or sensor drift. The classical least squares/partial least squares (CLS/PLS) hybrid algorithm is tested in this study for its ability to update calibration models for unmodeled interferents and sensor drift with information from only a single recalibration standard. Use of the CLS/PLS hybrid algorithm for calibration and calibration maintenance of surface acoustic wave (SAW) devices was investigated for synthetic mixtures of iso-octane-methanol-water and with synthetic mixtures of nerve agent analogs, di-iso-propyl methyl phosphonate (DIMP)-kerosene-water along with a true ternary mixture of dimethyl methyl phosphonate (DMMP)-kerosene-water. Calibration statistics using the hybrid algorithm were found to be as good as those obtained from a standard partial least squares (PLS) analysis. In prediction, the hybrid algorithm models were found to perform equivalently to PLS models in the absence of unmodeled interferents or sensor drift, with an accuracy of 5-10% of the reference values and a high degree of precision. In the case of prediction in the presence of unmodeled interferents and/or sensor drift, PLS models and prediction augmented CLS/PLS (PACLS/PLS) hybrid models were compared using a single standard sample to update each model for prediction. For the cases studied, PACLS/PLS hybrid models were comparable to or outperformed updated PLS models that used subset recalibration or piece-wise direct standardization.

More Details

The growth of n-type GaSb by metal-organic chemical vapor deposition : effects of two-band conduction on carrier concentrations and donor activation

Proposed for publication in the Journal of Applied Physics.

Cederberg, Jeffrey G.; Biefeld, Robert M.

n-type GaSb has been prepared by metal-organic chemical vapour deposition with tellurium donors using diethyltelluride as the dopant precursor. The maximum carrier concentration achieved was 1.7 x 10{sup 18} cm{sup -3}, as measured by van der Pauw-Hall effect measurements, for an atomic tellurium concentration of 1.8 x 10{sup 19} cm{sup -3}. The apparent low activation of tellurium donors is explained by a model that considers the effect of electrons occupying both the {Lambda} and L bands in GaSb due to the small energy difference between the {Lambda} and L conduction band minima. The model also accounts for the apparent increase in the carrier concentration determined by van der Pauw-Hall effect measurements at cryogenic temperatures.

More Details

An exploration of alternative approaches to the representation of uncertainty in model predictions

Proposed for publication in Reliability Engineering and System Safety.

Oberkampf, William L.; Helton, Jon C.; Johnson, Jay D.

Several simple test problems are used to explore the following approaches to the representation of the uncertainty in model predictions that derives from uncertainty in model inputs: probability theory, evidence theory, possibility theory, and interval analysis. Each of the test problems has rather diffuse characterizations of the uncertainty in model inputs obtained from one or more equally credible sources. These given uncertainty characterizations are translated into the mathematical structure associated with each of the indicated approaches to the representation of uncertainty and then propagated through the model with Monte Carlo techniques to obtain the corresponding representation of the uncertainty in one or more model predictions. The different approaches to the representation of uncertainty can lead to very different appearing representations of the uncertainty in model predictions even though the starting information is exactly the same for each approach. To avoid misunderstandings and, potentially, bad decisions, these representations must be interpreted in the context of the theory/procedure from which they derive.

More Details

Automated generation of weld path trajectories

Proposed for publication in the Journal of Ship Production.

Ames, Arlo; Hinman-Sweeney, Elaine

AUTOmated GENeration of Control Programs for Robotic Welding of Ship Structure (AUTOGEN) is software that automates the planning and compiling of control programs for robotic welding of ship structure. The software works by evaluating computer representations of the ship design and the manufacturing plan. Based on this evaluation, AUTOGEN internally identifies and appropriately characterizes each weld. Then it constructs the robot motions necessary to accomplish the welds and determines for each the correct assignment of process control values. AUTOGEN generates these robot control programs completely without manual intervention or edits except to correct wrong or missing input data. Most ship structure assemblies are unique or at best manufactured only a few times. Accordingly, the high cost inherent in all previous methods of preparing complex control programs has made robot welding of ship structures economically unattractive to the U.S. shipbuilding industry. AUTOGEN eliminates the cost of creating robot control programs. With programming costs eliminated, capitalization of robots to weld ship structures becomes economically viable. Robot welding of ship structures will result in reduced ship costs, uniform product quality, and enhanced worker safety. Sandia National Laboratories and Northrop Grumman Ship Systems worked with the National Shipbuilding Research Program to develop a means of automated path and process generation for robotic welding. This effort resulted in the AUTOGEN program, which has successfully demonstrated automated path generation and robot control. Although the current implementation of AUTOGEN is optimized for welding applications, the path and process planning capability has applicability to a number of industrial applications, including painting, riveting, and adhesive delivery.

More Details

Modeling electrodeposition in LIGA microfabrication using an arbitrary-Lagrangian-Eulerian formulation for moving-boundary tracking with repeated re-meshing

Chen, Ken S.

Electrodeposition is a key process in LIGA (Lithographie, Galvanoformung, Abformung - German words for lithography, electroplating and molding) - microfabrication, which is increasingly demonstrated to be a viable technology for fabricating micro-devices or parts. LIGA Electrodeposition involves complex multi-physics phenomena: (1) diffusion, migration, and convection of charged species in a centimeter-scale electrolyte-bath region and in micron-scale featurecavity or trench regions; (2) homogeneous and heterogeneous electrochemical reactions; and (3) moving deposition surface or surfaces on which metal ions (e.g., {approx} i) are electrochemically reduced to form a pure metal or an alloy.

More Details

Observations of the cellular structure of fuel-air detonations

Proposed for publication in Combustion and Flame.

Tieszen, Sheldon R.; Slezak, Scott E.

Detonation cell widths, which provide a measure of detonability of a mixture, were measured for hydrocarbon-air and hydrogen-air-diluent mixtures. Results were obtained from a 0.43-m-diameter, 13.1-m-long heated detonation tube with an initial pressure of 101 kPa and an initial temperature between 25 and 100 C. The cell widths of simple cyclic hydrocarbons are somewhat smaller than those of comparable straight-chain alkanes. Cyclic hydrocarbons tested generally had similar cell sizes despite differences in degree of bond saturation, bond strain energy, oxygen substitution, and chemical structure. There was a significant reduction in the cell width of octane, a straight-chain alkane, when it was mixed with small quantities of hexyl nitrate. The effect of a diluent, such as steam and carbon dioxide, on the cell width of a hydrogen-air mixture is shown over a wide range of mixture stoichiometries. The data illustrate the effects of initial temperature and pressure on the cell width when compared to previous studies. Not only is carbon dioxide more effective than steam at increasing the mixture cell width, but also its effectiveness increases relative to that of steam with increasing concentrations. The detonability limits, which are dependent on the facility geometry and type of initiator used in this study, were measured for fuel-lean and fuel-rich hydrogen-air mixtures and stoichiometric hydrogen-air mixtures diluted with steam. The detonability limits are nominally at the flammability limits for hydrogen-air mixtures. The subcellular structure within a fuel-lean hydrogen-air detonation cell was recorded using a sooted foil. The uniform fine structure of the self-sustained transverse wave and the irregular structure of the overdriven lead shock wave are shown at the triple point path that marks the boundary between detonation cells.

More Details

Accounting for geophysical information in geostatistical characterization of unexploded ordnance (UXO) sites

Proposed for publication in Environmental and Ecological Statistics.

Saito, Hirotaka; Mckenna, Sean A.

Efficient and reliable unexploded ordnance (UXO) site characterization is needed for decisions regarding future land use. There are several types of data available at UXO sites and geophysical signal maps are one of the most valuable sources of information. Incorporation of such information into site characterization requires a flexible and reliable methodology. Geostatistics allows one to account for exhaustive secondary information (i.e.,, known at every location within the field) in many different ways. Kriging and logistic regression were combined to map the probability of occurrence of at least one geophysical anomaly of interest, such as UXO, from a limited number of indicator data. Logistic regression is used to derive the trend from a geophysical signal map, and kriged residuals are added to the trend to estimate the probabilities of the presence of UXO at unsampled locations (simple kriging with varying local means or SKlm). Each location is identified for further remedial action if the estimated probability is greater than a given threshold. The technique is illustrated using a hypothetical UXO site generated by a UXO simulator, and a corresponding geophysical signal map. Indicator data are collected along two transects located within the site. Classification performances are then assessed by computing proportions of correct classification, false positive, false negative, and Kappa statistics. Two common approaches, one of which does not take any secondary information into account (ordinary indicator kriging) and a variant of common cokriging (collocated cokriging), were used for comparison purposes. Results indicate that accounting for exhaustive secondary information improves the overall characterization of UXO sites if an appropriate methodology, SKlm in this case, is used.

More Details

Load relaxation of helical extension springs in transient thermal environments

Proposed for publication in Journal of Materials Engineering and Performance.

Dykhuizen, Ronald C.; Robino, Charles V.

The load relaxation behavior of small Elgiloy helical extension springs has been evaluated by a combined experimental and modeling approach. Isothermal, continuous heating, and interrupted heating relaxation tests of a specific spring design were conducted. Spring constants also were measured and compared with predictions using common spring formulas. For the constant heating rate relaxation tests, it was found that the springs retained their strength to higher temperatures at higher heating rates. A model, which describes the relaxation behavior, was developed and calibrated with the isothermal load relaxation tests. The model incorporates both time-independent deformation mechanisms, such as thermal expansion and shear modulus changes, as well as time-dependent mechanisms such as primary and steady state creep. The model was shown to accurately predict the load relaxation behavior for the continuous heating tests, as well as for a complex stepwise heating thermal cycle. The model can be used to determine the relaxation behavior for any arbitrary thermal cycle. An extension of the model to other spring designs is discussed.

More Details

Interstitial computing : utilizing spare cycles on supercomputers

Kleban, Stephen

This paper presents an analysis of utilizing unused cycles on supercomputers through the use of many small jobs. What we call 'interstitial computing,' is important to supercomputer centers for both productivity and political reasons. Interstitial computing makes use of the fact that small jobs are more or less fungible consumers of compute cycles that are more efficient for bin packing than the typical jobs on a supercomputer. An important feature of interstitial computing is that it not have a significant impact on the makespan of native jobs on the machine. Also, a facility can obtain higher utilizations that may only be otherwise possible with more complicated schemes or with very long wait times. The key contribution of this paper is that it provides theoretical and empirical guidelines for users and administrators for how currently unused supercomputer cycles may be exploited. We find that that interstitial computing is a more effective means for increasing machine utilization than increasing native job run times or size.

More Details

Degradation of monolayer lubricants for MEMS

Proceedings of SPIE - The International Society for Optical Engineering

Dugger, Michael T.; Hohlfelder, Robert J.; Peebles, Diane

Microelectromechanical systems (MEMS) with high out-of-plane stiffness are less susceptible to adhesion than more compliant structures, but reliable operation of sliding contacts still requires surfaces that exhibit adequate friction and wear performance after long periods of storage. Alkylsilane monolayers are popular surface treatments for silicon devices, and there has been some research to understand the performance of monolayers as a function of environment. However, there have been limited investigations of the tribological behavior of these surface treatments after exposure to harsh environments. There is a need to quantitatively determine the effects of storage environments on the performance of MEMS interfaces, rather than verifying device functionality alone. To this end, surface micromachined (SMM) structures that contain isolated tribological contacts have been used to investigate interface performance of alkylsilane monolayers after storage in inert environments, and after exposure to a variety of thermal and radiation environments. Results show that both octadecyltrichlorosilane (ODTS) and perfluorodecyltrichlorosilane (PFTS) exhibit little change in hydrophobicity or friction after Co-60 radiation exposures at a total dose of up to 500 krad. However, exposure to temperature cycles consistent with packaging technologies, in the presence of low levels of water vapor, produces degradation of hydrophobicity and increase in static friction for ODTS films while producing no significant degradation in PFTS films.

More Details

MEMS packaging efforts at Sandia National Laboratories

Proceedings of SPIE - The International Society for Optical Engineering

Custer, Jonathan S.

Sandia National Laboratories has programs covering a broad range of MEMS technologies from LIGA to bulk to surface micromachining. These MEMS technologies are being considered for an equally broad range of applications, including sensors, actuators, optics, and microfluidics. As these technologies have moved from the research to the prototype product stage, packaging has been required to develop new capabilities to integrated MEMS and other technologies into functional microsystems. This paper discusses several of Sandia's MEMS packaging efforts, focusing mainly on inserting Sandia's SUMMiT™ V (5-level polysilicon) surface micromachining technology into fieldable microsystems.

More Details

SGOPT User Manual Version 2.0

Hart, William E.

This document provides a user manual for the SGOPT software library. SGOPT is a C++ class library for nonlinear optimization. This library uses an object-oriented design that allows the software to be extended to a new problem domains. Furthermore, this library was designed to that the interface is straightforward while providing flexibility to allow new algorithms to be easily added to this library. The SGOPT library has been used by several software projects at Sandia, and it is integrated into the DAKOTA design and analysis toolkit. This report provides a high-level description of the optimization algorithms provided by SGOPT and describes the C++ class hierarchy in which they are implemented. Finally, installation instructions are included.

More Details

Nanogeochemistry: Geochemical reactions and mass transfers in nanopores

Geology

Wang, Yifeng; Bryan, C.R.; Gao, Huizhen

Nanopores are ubiquitous in porous geologic media and may account for >90% of total mineral surface areas. Surface chemistry, ion sorption, and the related geochemical reactions within nanopores can be significantly modified by a nanometer-scale space confinement. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (ΔpK = pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined mineral-water interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on nanopore surfaces. Also, the water activity in a nanopore is greatly reduced, thus increasing the tendency for inner sphere complexation and mineral precipitation. All these effects combine to preferentially enrich trace elements in nanopores, as observed in both field and laboratory studies. The work reported here sheds new light on such fundamental geochemical issues as the irreversibility of ion sorption and desorption, the bioavailability of subsurface contaminants, and the enrichment of trace metals in ore deposits, as well as the kinetics of mineral dissolution and/or precipitation.

More Details

Analysis of the Massive Salt Fall in Big Hill Cavern 103

Munson, Darrell E.; Bauer, Stephen J.; Rautman, Christopher A.; Ehgartner, Brian L.; Sattler, Allan R.

This report summarizes recent reviews, observations, and analyses believed to be imperative to our understanding of the recent two million cubic feet salt fall event in Big Hill Cavern 103, one of the caverns of the Strategic Petroleum Reserve (SPR). The fall was the result of one or more stress driven mechanical instabilities, the origins of which are discussed in the report. The work has lead to important conclusions concerning the engineering and operations of the caverns at Big Hill. Specifically, Big Hill, being the youngest SPR site, was subjected to state-of-the-art solutioning methods to develop nominally well-formed, right-circular cylindrical caverns. Examination of the pressure history records indicate that operationally all Big Hill SPR caverns have been treated similarly. Significantly, new three-dimensional (3-D) imaging methods, applied to old (original) and more recent sonar survey data, have provided much more detailed views of cavern walls, roofs, and floors. This has made possible documentation of the presence of localized deviations from ''smooth'' cylindrical cavern walls. These deviations are now recognized as isolated, linear and/or planar features in the original sonar data (circa early 1990s), which persist to the present time. These elements represent either sites of preferential leaching, localized spalling, or a combination of the two. Understanding the precise origin of these phenomena remains a challenge, especially considering, in a historical sense, the domal salt at Big Hill was believed to be well-characterized. However, significant inhomogeneities in the domal salt that may imply abnormalities in leaching were not noted. Indeed, any inhomogeneities were judged inconsequential to the solution-engineering methods at the time, and, by the same token, to the approaches to modeling the rock mass geomechanical response. The rock mass was treated as isotropic and homogeneous, which in retrospect, appears to have been an over simplification. This analysis shows there are possible new opportunities regarding completing an appropriate site characterization for existing operating cavern fields in the SPR, as well as expansion of current sites or development of new sites. Such characterization should first be consistent with needs identified by this report. Secondly, the characterization needs to satisfy the input requirements of the 3-D solutioning calculational methods being developed, together with 3-D geomechanical analyses techniques which address deformation of a salt rock mass that contains inhomogeneities. It seems apparent that focusing on these important areas could preclude occurrence of unexpected events that would adversely impact the operations of SPR.

More Details

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration

Ashwill, Thomas D.

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

More Details

Cooperative measures to mitigate Asia-Pacific maritime conflicts

Olsen, John N.

The economies of East Asia are predominantly export based and, therefore, place special emphasis on the security of the sea lines of communication (SLOCs). Due to economic globalization, the United States shares these concerns. Cooperative measures by the concerned parties could reduce the potential for disruption by maritime conflicts. Primary threats against the SLOCs are disputes over the resources under the seas, disputes over some small island groups, disputes between particular parties (China-Taiwan and North-South Korea), or illegal activities like smuggling, piracy, or terrorism. This paper provides an overview on these threats, issue by issue, to identify common elements and needed cooperation. Cooperation on other topics such as search and rescue, fisheries protection, and oil spill response may help support improved relations to prevent maritime conflicts. Many technologies can help support maritime cooperation, including improved communications links, tracking and emergency beacon devices, and satellite imaging. Appropriate technical and political means are suggested for each threat to the SLOCs.

More Details

Laser Safety Audit and Inventory System Database

Augustoni, Arnold L.

A laser safety auditing and inventory system has been in use at Sandia National Laboratories--Albuquerque for the past five years and has recently been considered for adoption by Sandia National Laboratories--Livermore. The system utilizes the ''Microsoft Access'' database application, part of the Office 2000 software package. Audit and inventory data is available on-line for ready access by laser users. Data is updated weekly to provide users with current information relating to laser facility audits and laser inventories.

More Details

A Theory for RF and Microwave Scalar Reflectometers

Moyer, Robert D.

A careful analysis of rf and microwave scalar reflectometers is conducted to (1) reveal the advantages of 4-port over 3-port reflectometers, (2) show the advantage--and remaining weaknesses--of a reflectometer initialized by the open/short method and (3) present expressions for the worst-case errors in scalar reflectometer measurements.

More Details
Results 89301–89350 of 99,299
Results 89301–89350 of 99,299