Publications

Results 1–50 of 203

Search results

Jump to search filters

Understanding surfaces and interfaces in nanocomposites of silicone and barium titanate through experiments and modeling

MRS Communications

Pritchard, Avery; Fuentes, Heather; Santosa, Jessica; Bartling, Vanessa; Garan, Josiah; Gonzalez, Madison; Nelson, Katrina; Dato, Albert; Monson, Todd; Van Ginhoven, Renee

Barium titanate (BTO) is a ferroelectric perovskite used in electronics and energy storage systems because of its high dielectric constant. Decreasing the BTO particle size was shown to increase the dielectric constant of the perovskite, which is an intriguing but contested result. We investigated this result by fabricating silicone-matrix nanocomposite specimens containing BTO particles of decreasing diameter. Furthermore, density functional theory modeling was used to understand the interactions at the BTO particle surface. Combining results from experiments and modeling indicated that polymer type, particle surface interactions, and particle surface structure can influence the dielectric properties of polymer-matrix nanocomposites containing BTO.

More Details

Growth and characterization of ferromagnetic Ga2O3:(Cr, Mn)

Sapkota, Keshab R.; Wang, George T.; Addamane, Sadhvikas J.; Lu, Tzu M.; Zhao, Hongping; Monson, Todd; Pearce, Charles J.; Sharps, Paul

The goal of this Exploratory Express project was to explore the possibility of tunable ferromagnetism in Mn or Cr incorporated epitaxial Ga2O3 films. Tunability of magnetic properties can enable novel applications in spintronics, quantum computing, and magnetism-based logics by allowing control of magnetism down to the nanoscale. Carriers (electrons or holes) mediated ferromagnetic ordering in semiconductor can lead to tunable ferromagnetism by leveraging the tunability of carrier density with doping level, gate electric field, or optical pumping of the carriers. The magnetic ions (Cr or Mn) in Ga2O3 act as localized spin centers which can potentially be magnetically coupled through conduction electrons to enable ferromagnetic ordering. Here we investigated tunable ferromagnetism in beta Ga2O3 semiconductor host with various n-doping levels by incorporating 2.4 atomic percent Mn or Cr. The R&D approach involved growth of epitaxial Ga2O3 film on sapphire or Ga2O3 substrate, implantation of Mn or Cr ions, annealing of the samples post implantation, and magnetic measurements. We studied magnetic behavior of Mn:Ga2O3 as a function of different n-doping levels and various annealing temperatures. The vibrating sample magnetometry (VSM) measurement exhibited strong ferromagnetic signals from the annealed Mn:Ga2O3 sample with n-doping level of 5E19 cm-3. This ferromagnetic behavior disappears from Mn:Ga2O3 when the n-doping level is reduced to 5E16 cm-3. Although these results are to be further verified by other measurement schemes due to the observation of background ferromagnetism from the growth substrate, these results indicate the possibility of tunable ferromagnetism in Mn:Ga2O3 mediated by conduction electrons.

More Details

Bottom-Up Soft Magnetic Composites (FY 2022 Annual Progress Report)

Monson, Todd

The project objective is to develop high-magnetization, low-loss iron nitride based soft magnetic composites for electrical machines. These new SMCs will enable low eddy current losses and therefore highly efficient motor operation at rotational speeds up to 20,000 rpm. Additionally, iron nitride and epoxy composites will be capable of operating at temperatures of 150 °C or greater over a lifetime of 300,000 miles or 15 years.

More Details

Functionally graded magnetic materials: a perspective to advance charged particle optics through compositional engineering

Materials Research Letters

Lang, Eric; Milne, Zac; Adamczyk, Jesse A.; Barrick, Erin J.; Firdosy, Samad; Ury, Nicholas; Dillon, R.P.; Monson, Todd; Kustas, Andrew B.; Jungjohann, Katherine; Hattar, Khalid

Additive manufacturing has ushered in a new paradigm of bottom-up materials-by-design of spatially non-uniform materials. Functionally graded materials have locally tailored compositions to provide optimized global properties and performance. In this letter, we propose an opportunity for the application of graded magnetic materials as lens elements for charged particle optics. A Hiperco50/Hymu80 (FeCo-2 V/Fe-80Ni-5Mo) graded magnetic alloy was successfully additively manufactured via Laser Directed Energy Deposition with spatially varying magnetic properties. The compositional gradient is then applied using computational simulations to demonstrate how a tailored material can enhance the magnetic performance of a critical, image-forming component of a transmission electron microscope.

More Details

Analyzing barium titanate TiO2 surface interactions with tert-butylphosphonic acid using density functional theory

MRS communications

Marvin, Jessica; Nicholson, James; Turek, Cedar; Iwasa, Erina; Pangrekar, Nilay; Fowler, Whitney C.; Van Ginhoven, Renee M.; Monson, Todd

Barium titanate (BTO) is a widely researched ferroelectric useful for energy storage. While BTO’s surface chemistry is commonly studied using density functional theory, little has been published on the TiO2 surface. Here, we determined that BTO’s surface response can be decoupled from the ferroelectric response by using a pre-optimized ferroelectric slab and allowing only the top three atomic z-layers to respond to ligand binding. Multiple favorable binding modes were identified for hydrogen, hydroxyl, water, and tert-butyl phosphonic acid on BTO’s TiO2 surface. Of these ligands, tBuPA dominates surface binding with binding energies as low as -2.61 eV for its nine configurations.

More Details

Design, Modeling, and Testing of a Novel Inductor for Electric Vehicles: Iron Nitride Soft Magnetic Composites

Fultz-Waters, Sydney; Krynock, Jacob; Monson, Todd

New technology for electric vehicles (EVs) must meet the requirements of higher energy usage, lower costs, and more sustainable source materials. One promising material for EV power system components is iron nitride (IN) soft magnetic composites (SMCs) because of their competitive magnetic properties and high abundance of the source materials. As part of an ongoing program at Sandia National Laboratories, this project focused on using computer modeling to optimize the prototyping process for an iron nitride SMC toroidal inductor to reach a target inductance of 600 μH. Four inductors with different combinations of wiring (26 AWG and 20 AWG) and vol% loading of iron nitride (65 vol% and 50 vol%) were fabricated at Cal Poly and characterized using an LCR meter. These inductors were also modeled using COMSOL Multiphysics™ with the Magnetic Fields module. The inductance data from the experiment and the model show that the 65 vol% IN prototypes and models agree with about 8% difference, while the 50 vol% IN samples show about a 9% difference between the prototype and the model. These results suggest that the model can predict inductance with both accuracy and precision with low confidence for the given sample size of four. An additional parameter of AC resistance is studied but the AC resistance results from the inductors and from the model generally do not agree closely, suggesting that the current model used in the project does not fully capture the mechanisms behind AC resistance of the inductor. With the focus of the project on inductance, the percent difference results of less than 9% across the four inductors that were tested increases confidence in the model’s predictive capabilities for inductance only. Using the inductance results from both the model and experiment, the final suggested inductor design is a 65 vol% core with 150 windings of 20 AWG wire that is 8 cm across and 1.5 cm tall to reach the inductance goal of 600 μH based on analysis using the optimized COMSOLTM model.

More Details

Negligible magnetic losses at low temperatures in liquid phase epitaxy grown Y3Fe5O12 films

Physical Review Materials

Will-Cole, A.R.; Hart, James L.; Lauter, Valeria; Grutter, Alexander; Dubs, Carsten; Lindner, Morris; Reimann, Timmy; Pearce, Charles J.; Monson, Todd; Cha, Judy J.; Heiman, Don; Sun, Nian X.

Yttrium iron garnet (Y3Fe5O12; YIG) has a unique combination of low magnetic damping, high spin-wave conductivity, and insulating properties that make it a highly attractive material for a variety of applications in the fields of magnetics and spintronics. While the room-temperature magnetization dynamics of YIG have been extensively studied, there are limited reports correlating the low-temperature magnetization dynamics to the material structure or growth method. Here, in this study, we investigate liquid phase epitaxy grown YIG films and their magnetization dynamics at temperatures down to 10 K. We show there is a negligible increase in the ferromagnetic resonance linewidth down to 10 K, which is unique when compared with YIG films grown by other deposition methods. From the broadband ferromagnetic resonance measurements, polarized neutron reflectivity, and scanning transmission electron microscopy, we conclude that these liquid phase epitaxy grown films have negligible rare-earth impurities present, specifically the suppression of Gd diffusion from the Gd3Ga5O12 (GGG) substrate into the Y3Fe5O12 film, and therefore negligible magnetic losses attributed to the slow-relaxation mechanism. Overall, liquid phase epitaxy YIG films have a YIG/GGG interface that is five times sharper and have ten times lower ferromagnetic resonance linewidths below 50 K than comparable YIG films by other deposition methods. Thus, liquid phase epitaxy grown YIG films are ideal for low-temperature experiments/applications that require low magnetic losses, such as quantum transduction and manipulation via magnon coupling.

More Details

Fabrication and characterization of net-shaped iron nitride-amine-epoxy soft magnetic composites

Frontiers in Materials

Hoyt, Melinda R.; Falcon, Gillian I.; Pearce, Charles J.; Stevens, Tyler E.; Johnson, Emily M.; Szenderski, Thomas M.; Sorenson, Nathan R.; Fultz-Waters, Sydney F.; Rodriguez, Mark A.; Whalen, Lisa J.; Monson, Todd; Delaney, Robert E.

Soft magnetic composites (SMCs) offer a promising alternative to electrical steels and soft ferrites in high performance motors and power electronics. They are ideal for incorporation into passive electronic components such as inductors and transformers, which require a non-permanent magnetic core to rapidly switch magnetization. As a result, there is a need for materials with the right combination of low coercivity, low magnetic remanence, high relative permeability, and high saturation magnetization to achieve these goals. Iron nitride is an attractive soft magnetic material for incorporation into an amine/epoxy resin matrix. This permits the synthesis of net-shaped SMCs using a “bottom-up” approach for overcoming the limitations of current state-of-the-art SMCs made via conventional powder metal processing techniques. In this work we present the fabrication of various net-shaped, iron nitride-based SMCs using two different amine/epoxy resin systems and their magnetic characterization. The maximum volume loading of iron nitride reached was ∼77% via hot pressing, which produced SMCs with a saturation magnetic polarization (Js) of ∼0.9 T, roughly 2–3 times the Js of soft ferrites.

More Details

Metrics and Strategies for Design of DC Bias Resilient Transformers

IEEE Open Access Journal of Power and Energy

Prasad, Akhil; Sudhoff, Scott D.; Monson, Todd; Subramania, Ganapathi S.

Geomagnetic disturbances (GMDs) give rise to geomagnetically induced currents (GICs) on the earth's surface which find their way into power systems via grounded transformer neutrals. The quasi-dc nature of the GICs results in half-cycle saturation of the power grid transformers which in turn results in transformer failure, life reduction, and other adverse effects. Therefore, transformers need to be more resilient to dc excitation. This paper sets forth dc immunity metrics for transformers. Furthermore, this paper sets forth a novel transformer architecture and a design methodology which employs the dc immunity metrics to make it more resilient to dc excitation. This is demonstrated using a time-stepping 2D finite element analysis (FEA) simulation. It was found that a relatively small change in the core geometry significantly increases transformer resiliency with respect to dc excitation.

More Details

Phase stability and magnetic and electronic properties of a spark plasma sintered CoFe – P soft magnetic alloy

Journal of Alloys and Compounds

Belcher, Calvin H.; Zheng, Baolong; Dickens, Sara M.; Domrzalski, Jessica N.; Langlois, Eric D.; Lehman, Benjamin; Pearce, Charles J.; Delaney, Robert E.; Macdonald, Benjamin E.; Apelian, Diran; Lavernia, Enrique J.; Monson, Todd

More efficient power conversion devices are able to transmit greater electrical power across larger distances to satisfy growing global electrical needs. A critical requirement to achieve more efficient power conversion are the soft magnetic materials used as core materials in transformers, inductors, and motors. To that effect it is well known that the use of non-equilibrium microstructures, which are, for example, nanocrystalline or consist of single phase solid solutions, can yield high saturation magnetic polarization and high electrical resistivity necessary for more efficient soft magnetic materials. In this work, we synthesized CoFe – P soft magnetic alloys containing nanocrystalline, single phase solid solution microstructures and studied the effect of a secondary intermetallic phase on the saturation magnetic polarization and electrical resistivity of the consolidated alloy. Single phase solid solution CoFe – P alloys were prepared through mechanically alloying metal powders and phase decomposition was observed after subsequent consolidation via spark plasma sintering (SPS) at various temperatures. The secondary intermetallic phase was identified as the orthorhombic (CoxFe1−x)2P phase and the magnetic properties of the (CoxFe1−x)2P intermetallic phase were found to be detrimental to the soft magnetic properties of the targeted CoFe – P alloy.

More Details

Electric Drive Technologies Research: Bottom-Up Soft Magnetic Composites (FY2022 Annual Progress Report)

Monson, Todd

In order to meet 2025 goals for enhanced peak power (100 kW), specific power (50 kW/L), and reduced cost (3.3 $\$$/kW) in a motor that can operate at ≥ 20,000 rpm, improved soft magnetic materials must be developed. Better performing soft magnetic materials will also enable rare earth free electric motors. In fact, replacement of permanent magnets with soft magnetic materials was highlighted in the Electrical and Electronics Technical Team (EETT) Roadmap as a R&D pathway for meeting 2025 targets. Eddy current losses in conventional soft magnetic materials, such as silicon steel, begin to significantly impact motor efficiency as rotational speed increases. Soft magnetic composites (SMCs), which combine magnetic particles with an insulating matrix to boost electrical resistivity (ρ) and decrease eddy current losses, even at higher operating frequencies (or rotational speeds), are an attractive solution. Today, SMCs are being fabricated with values of ρ ranging between 10-3 to 10-1 μohm∙m, which is significantly higher than 3% silicon steel (~0.05 μohm∙m). The isotropic nature of SMCs is ideally suited for motors with 3D flux paths, such as axial flux motors. Additionally, the manufacturing cost of SMCs is low and they are highly amenable to advanced manufacturing and net-shaping into complex geometries, which further reduces manufacturing costs. There is still significant room for advancement in SMCs, and therefore additional improvements in electrical machine performance. For example, despite the inclusion of a non-magnetic insulating material, the electrical resistivities of SMCs are still far below that of soft ferrites (10 – 108 μohm∙m).

More Details

Investigating the dielectric constant of barium titanate in a polymer-matrix nanocomposite

MRS Advances

Cooper, Emma C.; De Anda, Eduardo; Flitz, Evan; Kim, Halie; Casanas, Nicholas; Johnson, Lillian; Kedzierski, Zoe; Domrzalski, Jessica N.; Dato, Albert; Monson, Todd

Barium titanate (BTO) is a ferroelectric material used in capacitors because of its high bulk dielectric constant. However, the impact of the size of BTO on its dielectric constant is not yet fully understood and is highly contested. Here, we present an investigation into the dielectric constant of BTO nanoparticles with diameters ranging between 50 and 500 nm. BTO nanoparticles were incorporated into acrylonitrile butadiene styrene and injection molded into parallel plate capacitors, which were used to determine nanocomposite dielectric constants. The dielectric constants of BTO nanoparticles were obtained by combining experimental measurements with computational results from COMSOL simulations of ABS-matrix nanocomposites containing BTO. The dielectric constant of BTO was observed to be relatively constant at nanoparticle diameters as small as 200 nm but sharply declined at smaller nanoparticle sizes. These results will be useful in the development of improved energy storage and power conditioning systems utilizing BTO nanoparticles.

More Details

Surface Functionalized Barium Titanate Nanoparticles: A Combined Experimental and Computational Study

ECS Journal of Solid State Science and Technology

Domrzalski, Jessica N.; Stevens, Tyler E.; Van Ginhoven, Renee M.; Fritzsching, Keith; Walder, Brennan J.; Johnson, Emily M.; Lewis, Riley E.; Vreeland, Erika; Pearce, Charles J.; Vargas, David A.; Coker, Eric N.; Foulk, James W.; Grey, John K.; Monson, Todd

Barium titanate (BTO) nanoparticles show great potential for use in electrostatic capacitors with high energy density. This includes both polymer composite and sintered capacitors. However, questions about the nanoparticles’ size distribution, amount of agglomeration, and surface ligand effect on performance properties remain. Reducing particle agglomeration is a crucial step to understanding the properties of nanoscale particles, as agglomeration has significant effects on the composite dielectric constant. BTO surface functionalization using phosphonic acids is known reduce BTO nanoparticle agglomeration. We explore solution synthesized 10 nm BTO particles with tert-butylphosphonic acid ligands. Recent methods to quantifying agglomeration using an epoxy matrix before imaging shows that tert-butylphosphonic acid ligands reduce BTO agglomeration by 33%. Thermometric, spectroscopic, and computational methods provide confirmation of ligand binding and provide evidence of multiple ligand binding modes on the BTO particle surface.

More Details

Adrian Portales Coop Internship Report

Portales, Adrian; Monson, Todd

Using the thesis of W.R. Nolan (cite) as a guide, Cobalt Iron (CoFe) powders were reacted with 0.1 wt.% and 0.2 wt.% phosphoric acid in a 20:1 ratio of acetone to phosphoric acid. The powders were then dried at room temperature. The resulting phosphate coated CoFe was then mixed with 0.75 wt.% of the lubricant N,N' ethylene bis-stearamide (trade name: Acrawax C) and hot pressed to form a consolidated soft magnetic material referred to as CoFeP. With an avenue of synthesis for CoFeP determined, a proper amount of stock was synthesized for continuous “brick” production. While under current optimization, these 1x1 mm magnetic bricks will ultimately be placed and secured along the inside wall of each MK Magnetics transformer core by an appropriate CoFeP dispersed epoxy. As of now each brick has been produced though a pressing and annealing process via square 2x2 cm die. Before a brick is made a pressure calculation is run to ensure the dies maximum operating pressure is not exceeded. Figure 1. ensures the user’s safety by showing that the tons-on-ram required for a 2x2 cm square die to reach 760 MPa is below the point of die failure.

More Details

The role of microstructural evolution during spark plasma sintering on the soft magnetic and electronic properties of a CoFe–Al2O3 soft magnetic composite

Journal of Materials Science

Belcher, Calvin H.; Zheng, Baolong; Macdonald, Benjamin E.; Langlois, Eric D.; Lehman, Benjamin; Pearce, Charles J.; Delaney, Robert E.; Apelian, Diran; Lavernia, Enrique J.; Monson, Todd

For transformers and inductors to meet the world’s growing demand for electrical power, more efficient soft magnetic materials with high saturation magnetic polarization and high electrical resistivity are needed. This work aimed at the development of a soft magnetic composite synthesized via spark plasma sintering with both high saturation magnetic polarization and high electrical resistivity for efficient soft magnetic cores. CoFe powder particles coated with an insulating layer of Al2O3 were used as feedstock material to improve the electrical resistivity while retaining high saturation magnetic polarization. By maintaining a continuous non-magnetic Al2O3 phase throughout the material, both a high saturation magnetic polarization, above 1.5 T, and high electrical resistivity, above 100 μΩ·m, were achieved. Through microstructural characterization of samples consolidated at various temperatures, the role of microstructural evolution on the magnetic and electronic properties of the composite was elucidated. Upon consolidation at relatively high temperature, the CoFe was to found plastically deform and flow into the Al2O3 phase at the particle boundaries and this phenomenon was attributed to low resistivity in the composite. In contrast, at lower consolidation temperatures, perforation of the Al2O3 phase was not observed and a high electrical resistivity was achieved, while maintaining a high magnetic polarization, ideal for more efficient soft magnetic materials for transformers and inductors.

More Details

Synthesis and behavior of bulk iron nitride soft magnets via high-pressure spark plasma sintering

Journal of Materials Research

Monson, Todd; Zheng, Baolong; Delaney, Robert E.; Pearce, Charles J.; Zhou, Yizhang; Atcitty, Stanley; Lavernia, Enrique

Abstract: In this study, dense bulk iron nitrides (FexN) were synthesized for the first time ever using spark plasma sintering (SPS) of FexN powders. The Fe4N phase of iron nitride in particular has significant potential to serve as a new soft magnetic material in both transformer and inductor cores and electrical machines. The density of SPSed FexN increased with SPS temperature and pressure. The microstructure of the consolidated bulk FexN was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. XRD revealed a primary phase of Fe4N with secondary phases of Fe3N and metallic iron. Finite element analysis (FEA) was also applied to investigate and explain localized heating and temperature distribution during SPS. The effects of processing on interface bonding formation and phase evolution were investigated and discussed in detail to provide insight into fundamental phenomena and microstructural evolution in SPSed FexN. Graphic abstract: [Figure not available: see fulltext.]

More Details

Emerging Opportunities in Manufacturing Bulk Soft-Magnetic Alloys for Energy Applications: A Review

JOM

Kustas, Andrew B.; Susan, Donald F.; Monson, Todd

Soft-magnetic alloys exhibit exceptional functional properties that are beneficial for a variety of electromagnetic applications. These alloys are conventionally manufactured into sheet or bar forms using well-established insgot metallurgy practices that involve hot- and cold-working steps. However, recent developments in process metallurgy have unlocked opportunities to directly produce bulk soft-magnetic alloys with improved, and often tailorable, structure–property relationships that are unachievable conventionally. The emergence of unconventional manufacturing routes for soft-magnetic alloys is largely motivated by the need to improve the energy efficiency of electromagnetic devices. In this review, literature that details emerging manufacturing approaches for soft-magnetic alloys is overviewed. This review covers (1) severe plastic deformation, (2) recent advances in melt spinning, (3) powder-based methods, and (4) additive manufacturing. These methods are discussed in comparison with conventional rolling and bar processing. Perspectives and recommended future research directions are also discussed.

More Details

Bottom-Up Soft Magnetic Composites

Monson, Todd

In order to meet 2025 goals for enhanced peak power (100 kW), specific power (50 kW/L), and reduced cost (3.3 $/kW) in a motor that can operate at ≥ 20,000 rpm, improved soft magnetic materials must be developed. Better performing soft magnetic materials will also enable electric motors without rare earth elements. In fact, replacement of permanent magnets with soft magnetic materials was highlighted in the Electrical and Electronics Technical Team (EETT) Roadmap as a R&D pathway for meeting 2025 targets. Eddy current losses in conventional soft magnetic materials, such as silicon steel, begin to significantly impact motor efficiency as rotational speed is increased. Soft magnetic composites (SMCs), which combine magnetic particles with an insulating matrix to boost electrical resistivity (ρ) and decrease eddy current losses, even at higher operating frequencies (or rotational speeds), are an attractive solution. Today, SMCs are being fabricated with values of ρ ranging between 10-3 to 10-1 μohm∙m, which is significantly higher than 3% silicon steel (~0.5 μohm∙m). The isotropic nature of SMCs is ideally suited for motors with 3D flux paths, such as axial flux motors. Additionally, the manufacturing cost of SMCs is low and they are highly amenable to advanced manufacturing and net-shaping into complex geometries, which further reduces manufacturing costs. There is still significant room for advancement in SMCs, and therefore additional improvements in electrical machine performance. For example, despite the inclusion of a non-magnetic insulating material, the electrical resistivities of SMCs are still far below that of soft ferrites (10 – 108 μohm∙m).

More Details

Development of Vertical GaN Power Devices for Use in Electric Vehicle Drivetrains (invited)

Kaplar, Robert; Binder, Andrew; Yates, Luke; Allerman, A.A.; Crawford, Mary H.; Dickerson, Jeramy; Armstrong, Andrew A.; Glaser, Caleb E.; Steinfeldt, Bradley; Abate, Vincent M.; Foulk, James W.; Pickrell, Gregory W.; Sharps, Paul; Flicker, Jack D.; Neely, Jason C.; Rashkin, Lee J.; Gill, Lee; Goodrick, Kyle; Monson, Todd; Bock, Jonathan A.; Subramania, Ganapathi S.; Scott, Ethan; Cooper, James

Abstract not provided.

Investigating the dielectric properties of barium titanate nanocomposites using transmission electron microscopy image processing

MRS Advances

Ferro, Gio; Ganjam, Dithi; Gibson, Maia; Partington, Katie; Trikha, Akshay; Wu, Mandy; Domrzalski, Jessica N.; Dato, Albert; Monson, Todd

Barium titanate (BTO) is a ferroelectric perovskite material used in energy storage applications because of its high dielectric constant. A previous study showed that the dielectric constant for BTO nanoparticles drastically increases to over 15,000 at a particle size of 70 nm. This result is highly contested, but its implications to energy storage motivated our investigation into the dielectric constants of BTO nanoparticles that are incorporated into a polymer matrix. We developed a novel method of using image processing techniques on transmission electron microscope images of BTO-polymer nanocomposites. Data on the positions, shapes, sizes, and orientations of BTO nanoparticles were used to build more realistic computational models that simulate the dielectric behavior of the nanocomposites. Here, we investigate the relationship between regions of enhanced electric field and the composite dielectric constant.

More Details
Results 1–50 of 203
Results 1–50 of 203