Publications

Results 1–50 of 157

Search results

Jump to search filters

Discerning Deception: An Empirically-Driven Agent-Based Model of Expert Evaluation of Scientific Content

Emery, Benjamin F.; Verzi, Stephen J.; Dickson, Danielle S.; Gunda, Thushara

Both human subject experiments and computational, modeling and simulations have been used to study detection of deception. This work aims to combine these two methods by integrating empirically-derived information (from human subject experiments) into agent-based models to generate novel insights into the complex problems of detection of disinformation content. Computational experiments are used to simulate across multiple scenarios for evaluation and decision-making regarding the validity of potentially deceptive scientific documents. Factors influencing the human agent behaviors in the model were identified through a human subject experiment that was conducted to evaluate and characterize decision making related to disinformation discernment. Correlation and regression analyses were used to translate insights from the human subjects experiment to inform the parameterization of agent features and scenario development. Three scenarios were evaluated with the agent-based models to help evaluate the replicability of the simulations (validation analysis) and assess the influence of human agent and document features (sensitivity analyses). A replication of the human participant experiment demonstrated that the agent-based simulations compare favorably to empirical findings. The agent-based modeling was then used to conduct sensitivity analysis on the accuracy of deception detection as a function of document proportions and human agent features. Results indicate that precision values are adversely impacted when the proportion of deceptive documents is lower in the overall sample, whereas recall values are more sensitive to changes in human agent features. These findings indicate important nuances in accuracy evaluations that should be further considered (including consideration of potential alternate metrics) in future agent-based models of disinformation. Additional areas for future exploration include extension of simulations to consider other ways to align the agent-based model design with psychological theory and inclusion of agent-agent interactions, especially as it pertains to sharing of scientific information within an organizational context.

More Details

Reinforcement Learning Approach to Cybersecurity in Space (RELACSS)

Musuvathy, Srideep S.; Gomez Rivera, Abel O.; Bailey, Tyson; Verzi, Stephen J.; Sahakian, Meghan A.; Urias, Vincent; Gilley, Gabriel R.; Roy, Christopher C.

Securing satellite groundstations against cyber-attacks is vital to national security missions. However, these cyber threats are constantly evolving. As vulnerabilities are discovered and patched, new vulnerabilities are discovered and exploited. In order to automate the process of discovering existing vulnerabilities and the means to exploit them, a reinforcement learning framework is presented in this report. We demonstrate that this framework can learn to successfully navigate an unknown network and detect nodes of interest despite the presence of a moving target defense. The agent then exfiltrates a file of interest from the node as quickly as possible. This framework also incorporates a defensive software agent that learns to impede the attacking agents progress. This setup allows for the agents to work against each other and improve their abilities. We anticipate that this capability will help uncover unforeseen vulnerabilities and the means to mitigate them. The modular nature of the framework enables users to swap out learning algorithms and modify the reward functions in order to adapt the learning tasks to various use cases and environments. Several algorithms, viz., tabular Q learning, deep Q networks, proximal policy optimization, advantage actor-critic, generative adversarial imitation learning, are explored for the agents and the results highlighted. The agent learns to solve the tasks in a light-weight abstract environment. Once the agent learns to perform sufficiently well, it can be deployed in a minimega virtual machine environment (or a real network) with wrappers that map abstract actions to software commands. The agent also uses a local representation of the actions called a ‘slot-mechanism’. This allows the agent to learn in a certain network and generalize it to different networks. The defensive agent learns to predict the actions taken by an offensive agent and uses that information to anticipate the threat. This information can then either be used to raise an alarm or to take actions to thwart the attack. We believe that with the appropriate reward design, a representative environment, and action set, this framework can be generalized to tackle other cybersecurity tasks. By sufficiently training these agents, we can anticipate vulnerabilities leading to robust future designs. We can also deploy automated defensive agents that can help secure satellite groundstation and their vital national security missions.

More Details

What can simulation test beds teach us about social science? Results of the ground truth program

Computational and Mathematical Organization Theory

Naugle, Asmeret B.; Krofcheck, Daniel J.; Warrender, Christina E.; Lakkaraju, Kiran; Swiler, Laura P.; Verzi, Stephen J.; Emery, Benjamin; Murdock, Jaimie; Bernard, Michael; Romero, Vicente J.

The ground truth program used simulations as test beds for social science research methods. The simulations had known ground truth and were capable of producing large amounts of data. This allowed research teams to run experiments and ask questions of these simulations similar to social scientists studying real-world systems, and enabled robust evaluation of their causal inference, prediction, and prescription capabilities. We tested three hypotheses about research effectiveness using data from the ground truth program, specifically looking at the influence of complexity, causal understanding, and data collection on performance. We found some evidence that system complexity and causal understanding influenced research performance, but no evidence that data availability contributed. The ground truth program may be the first robust coupling of simulation test beds with an experimental framework capable of teasing out factors that determine the success of social science research.

More Details

Feedback density and causal complexity of simulation model structure

Journal of Simulation

Naugle, Asmeret B.; Verzi, Stephen J.; Lakkaraju, Kiran; Swiler, Laura P.; Warrender, Christina E.; Bernard, Michael; Romero, Vicente J.

Measures of simulation model complexity generally focus on outputs; we propose measuring the complexity of a model’s causal structure to gain insight into its fundamental character. This article introduces tools for measuring causal complexity. First, we introduce a method for developing a model’s causal structure diagram, which characterises the causal interactions present in the code. Causal structure diagrams facilitate comparison of simulation models, including those from different paradigms. Next, we develop metrics for evaluating a model’s causal complexity using its causal structure diagram. We discuss cyclomatic complexity as a measure of the intricacy of causal structure and introduce two new metrics that incorporate the concept of feedback, a fundamental component of causal structure. The first new metric introduced here is feedback density, a measure of the cycle-based interconnectedness of causal structure. The second metric combines cyclomatic complexity and feedback density into a comprehensive causal complexity measure. Finally, we demonstrate these complexity metrics on simulation models from multiple paradigms and discuss potential uses and interpretations. These tools enable direct comparison of models across paradigms and provide a mechanism for measuring and discussing complexity based on a model’s fundamental assumptions and design.

More Details

Machine Learning Solutions for a Stable Grid Recovery

Verzi, Stephen J.; Guttromson, Ross; Sorensen, Asael H.

Grid operating security studies are typically employed to establish operating boundaries, ensuring secure and stable operation for a range of operation under NERC guidelines. However, if these boundaries are severely violated, existing system security margins will be largely unknown, as would be a secure incremental dispatch path to higher security margins while continuing to serve load. As an alternative to the use of complex optimizations over dynamic conditions, this work employs the use of machine learning to identify a sequence of secure state transitions which place the grid in a higher degree of operating security with greater static and dynamic stability margins. Several reinforcement learning solution methods were developed using deep learning neural networks, including Deep Q-learning, Mu-Zero, and the continuous algorithms Proximal Reinforcement Learning, and Advantage Actor Critic Learning. The work is demonstrated on a power grid with three control dimensions but can be scaled in size and dimensionality, which is the subject of ongoing research.

More Details

Conflicting Information and Compliance With COVID-19 Behavioral Recommendations

Naugle, Asmeret B.; Rothganger, Fredrick R.; Verzi, Stephen J.; Doyle, Casey L.

The prevalence of COVID-19 is shaped by behavioral responses to recommendations and warnings. Available information on the disease determines the population’s perception of danger and thus its behavior; this information changes dynamically, and different sources may report conflicting information. We study the feedback between disease, information, and stay-at-home behavior using a hybrid agent-based-system dynamics model that incorporates evolving trust in sources of information. We use this model to investigate how divergent reporting and conflicting information can alter the trajectory of a public health crisis. The model shows that divergent reporting not only alters disease prevalence over time, but also increases polarization of the population’s behaviors and trust in different sources of information.

More Details

MalGen: Malware Generation with Specific Behaviors to Improve Machine Learning-based Detectors

Smith, Michael R.; Carbajal, Armida J.; Domschot, Eva; Johnson, Nicholas T.; Goyal, Akul; Lamb, Christopher; Lubars, Joseph P.; Kegelmeyer, William P.; Krishnakumar, Raga; Quynn, Sophie; Ramyaa, Ramyaa; Verzi, Stephen J.; Zhou, Xin

In recent years, infections and damage caused by malware have increased at exponential rates. At the same time, machine learning (ML) techniques have shown tremendous promise in many domains, often out performing human efforts by learning from large amounts of data. Results in the open literature suggest that ML is able to provide similar results for malware detection, achieving greater than 99% classifcation accuracy [49]. However, the same detection rates when applied in deployed settings have not been achieved. Malware is distinct from many other domains in which ML has shown success in that (1) it purposefully tries to hide, leading to noisy labels and (2) often its behavior is similar to benign software only differing in intent, among other complicating factors. This report details the reasons for the diffcultly of detecting novel malware by ML methods and offers solutions to improve the detection of novel malware.

More Details

Graph-Based Similarity Metrics for Comparing Simulation Model Causal Structures

Naugle, Asmeret B.; Swiler, Laura P.; Lakkaraju, Kiran; Verzi, Stephen J.; Warrender, Christina E.; Romero, Vicente J.

The causal structure of a simulation is a major determinant of both its character and behavior, yet most methods we use to compare simulations focus only on simulation outputs. We introduce a method that combines graphical representation with information theoretic metrics to quantitatively compare the causal structures of models. The method applies to agent-based simulations as well as system dynamics models and facilitates comparison within and between types. Comparing models based on their causal structures can illuminate differences in assumptions made by the models, allowing modelers to (1) better situate their models in the context of existing work, including highlighting novelty, (2) explicitly compare conceptual theory and assumptions to simulated theory and assumptions, and (3) investigate potential causal drivers of divergent behavior between models. We demonstrate the method by comparing two epidemiology models at different levels of aggregation.

More Details

The Ground Truth Program: Simulations as Test Beds for Social Science Research Methods.

Computational and Mathematical Organization Theory

Naugle, Asmeret B.; Russell, Adam; Lakkaraju, Kiran; Swiler, Laura P.; Verzi, Stephen J.; Romero, Vicente J.

Social systems are uniquely complex and difficult to study, but understanding them is vital to solving the world’s problems. The Ground Truth program developed a new way of testing the research methods that attempt to understand and leverage the Human Domain and its associated complexities. The program developed simulations of social systems as virtual world test beds. Not only were these simulations able to produce data on future states of the system under various circumstances and scenarios, but their causal ground truth was also explicitly known. Research teams studied these virtual worlds, facilitating deep validation of causal inference, prediction, and prescription methods. The Ground Truth program model provides a way to test and validate research methods to an extent previously impossible, and to study the intricacies and interactions of different components of research.

More Details

Data Science and Machine Learning for Genome Security

Verzi, Stephen J.; Krishnakumar, Raga; Levin, Drew; Krofcheck, Daniel J.; Williams, Kelly P.

This report describes research conducted to use data science and machine learning methods to distinguish targeted genome editing versus natural mutation and sequencer machine noise. Genome editing capabilities have been around for more than 20 years, and the efficiencies of these techniques has improved dramatically in the last 5+ years, notably with the rise of CRISPR-Cas technology. Whether or not a specific genome has been the target of an edit is concern for U.S. national security. The research detailed in this report provides first steps to address this concern. A large amount of data is necessary in our research, thus we invested considerable time collecting and processing it. We use an ensemble of decision tree and deep neural network machine learning methods as well as anomaly detection to detect genome edits given either whole exome or genome DNA reads. The edit detection results we obtained with our algorithms tested against samples held out during training of our methods are significantly better than random guessing, achieving high F1 and recall scores as well as with precision overall.

More Details

A Theoretical Approach for Reliability Within Information Supply Chains with Cycles and Negations

IEEE Transactions on Reliability

Livesay, Michael; Verzi, Stephen J.; Pless, Daniel; Stamber, Kevin L.; Lilje, Anneliese

Complex networks of information processing systems, or information supply chains, present challenges for performance analysis. We establish a mathematical setting, in which a process within an information supply chain can be analyzed in terms of the functionality of the system's components. Principles of this methodology are rigorously defended and induce a model for determining the reliability for the various products in these networks. Our model does not limit us from having cycles in the network, as long as the cycles do not contain negation. It is shown that our approach to reliability resolves the nonuniqueness caused by cycles in a probabilistic Boolean network. An iterative algorithm is given to find the reliability values of the model, using a process that can be fully automated. This automated method of discerning reliability is beneficial for systems managers. As a systems manager considers systems modification, such as the replacement of owned and maintained hardware systems with cloud computing resources, the need for comparative analysis of system reliability is paramount. The model is extended to handle conditional knowledge about the network, allowing one to make predictions of weaknesses in the system. Finally, to illustrate the model's flexibility over different forms, it is demonstrated on a system of components and subcomponents.

More Details

Using Reinforcement Learning to Increase Grid Security Under Contingency Conditions

2022 IEEE Kansas Power and Energy Conference, KPEC 2022

Verzi, Stephen J.; Guttromson, Ross; Sorensen, Asael H.

Grid operating security studies are typically employed to establish operating boundaries, ensuring secure and stable operation for a range of operation under NERC guidelines. However, if these boundaries are violated, the existing system security margins will be largely unknown. As an alternative to the use of complex optimizations over dynamic conditions, this work employs the use of Reinforcement-based Machine Learning to identify a sequence of secure state transitions which place the grid in a higher degree of operating security with greater static and dynamic stability margins. The approach requires the training of a Machine Learning Agent to accomplish this task using modeled data and employs it as a decision support tool under severe, near-blackout conditions.

More Details

Using Reinforcement Learning to Increase Grid Security Under Contingency Conditions

2022 IEEE Kansas Power and Energy Conference, KPEC 2022

Verzi, Stephen J.; Guttromson, Ross; Sorensen, Asael H.

Grid operating security studies are typically employed to establish operating boundaries, ensuring secure and stable operation for a range of operation under NERC guidelines. However, if these boundaries are violated, the existing system security margins will be largely unknown. As an alternative to the use of complex optimizations over dynamic conditions, this work employs the use of Reinforcement-based Machine Learning to identify a sequence of secure state transitions which place the grid in a higher degree of operating security with greater static and dynamic stability margins. The approach requires the training of a Machine Learning Agent to accomplish this task using modeled data and employs it as a decision support tool under severe, near-blackout conditions.

More Details

Advanced Detection of Wellbore Failure for Safe and Secure Utilization of Subsurface Infrastructure

Matteo, Edward N.; Conley, Donald M.; Verzi, Stephen J.; Roberts, Barry L.; Doyle, Casey L.; Sobolik, Steven; Gilletly, Samuel D.; Bauer, Stephen J.; Pyrak-Nolte, Laura J.; Reda Taha, Mahmoud M.; Stormont, John C.; Crandall, Dustin; Moriarty, Dylan M.; John, Esther W.L.; Wilson, Jennifer E.; Bettin, Giorgia; Hogancamp, Joshua; Fernandez, Serafin G.; Anwar, I.; Abdellatef, Mohammed; Murcia, Daniel H.; Bland, Jared

The main goal of this project was to create a state-of-the-art predictive capability that screens and identifies wellbores that are at the highest risk of catastrophic failure. This capability is critical to a host of subsurface applications, including gas storage, hydrocarbon extraction and storage, geothermal energy development, and waste disposal, which depend on seal integrity to meet U.S. energy demands in a safe and secure manner. In addition to the screening tool, this project also developed several other supporting capabilities to help understand fundamental processes involved in wellbore failure. This included novel experimental methods to characterize permeability and porosity evolution during compressive failure of cement, as well as methods and capabilities for understanding two-phase flow in damaged wellbore systems, and novel fracture-resistant cements made from recycled fibers.

More Details

Predictive Data-driven Platform for Subsurface Energy Production

Yoon, Hongkyu; Verzi, Stephen J.; Cauthen, Katherine R.; Musuvathy, Srideep S.; Melander, Darryl; Norland, Kyle; Morales, Adriana M.; Lee, Jonghyun; Sun, Alexander

Subsurface energy activities such as unconventional resource recovery, enhanced geothermal energy systems, and geologic carbon storage require fast and reliable methods to account for complex, multiphysical processes in heterogeneous fractured and porous media. Although reservoir simulation is considered the industry standard for simulating these subsurface systems with injection and/or extraction operations, reservoir simulation requires spatio-temporal “Big Data” into the simulation model, which is typically a major challenge during model development and computational phase. In this work, we developed and applied various deep neural network-based approaches to (1) process multiscale image segmentation, (2) generate ensemble members of drainage networks, flow channels, and porous media using deep convolutional generative adversarial network, (3) construct multiple hybrid neural networks such as convolutional LSTM and convolutional neural network-LSTM to develop fast and accurate reduced order models for shale gas extraction, and (4) physics-informed neural network and deep Q-learning for flow and energy production. We hypothesized that physicsbased machine learning/deep learning can overcome the shortcomings of traditional machine learning methods where data-driven models have faltered beyond the data and physical conditions used for training and validation. We improved and developed novel approaches to demonstrate that physics-based ML can allow us to incorporate physical constraints (e.g., scientific domain knowledge) into ML framework. Outcomes of this project will be readily applicable for many energy and national security problems that are particularly defined by multiscale features and network systems.

More Details

Emergent Recursive Multiscale Interaction in Complex Systems

Naugle, Asmeret B.; Doyle, Casey L.; Sweitzer, Matthew D.; Rothganger, Fredrick R.; Verzi, Stephen J.; Lakkaraju, Kiran; Kittinger, Robert; Bernard, Michael; Chen, Yuguo; Loyal, Joshua; Mueen, Abdullah

This project studied the potential for multiscale group dynamics in complex social systems, including emergent recursive interaction. Current social theory on group formation and interaction focuses on a single scale (individuals forming groups) and is largely qualitative in its explanation of mechanisms. We combined theory, modeling, and data analysis to find evidence that these multiscale phenomena exist, and to investigate their potential consequences and develop predictive capabilities. In this report, we discuss the results of data analysis showing that some group dynamics theory holds at multiple scales. We introduce a new theory on communicative vibration that uses social network dynamics to predict group life cycle events. We discuss a model of behavioral responses to the COVID-19 pandemic that incorporates influence and social pressures. Finally, we discuss a set of modeling techniques that can be used to simulate multiscale group phenomena.

More Details

Threat data generation for space systems

Proceedings - 2021 IEEE Space Computing Conference, SCC 2021

Sahakian, Meghan A.; Musuvathy, Srideep S.; Thorpe, Jamie E.; Verzi, Stephen J.; Vugrin, Eric; Dykstra, Matthew

Concerns about cyber threats to space systems are increasing. Researchers are developing intrusion detection and protection systems to mitigate these threats, but sparsity of cyber threat data poses a significant challenge to these efforts. Development of credible threat data sets are needed to overcome this challenge. This paper describes the extension/development of three data generation algorithms (generative adversarial networks, variational auto-encoders, and generative algorithm for multi-variate timeseries) to generate cyber threat data for space systems. The algorithms are applied to a use case that leverages the NASA Operational Simulation for Small Satellites (NOS$^{3})$ platform. Qualitative and quantitative measures are applied to evaluate the generated data. Strengths and weaknesses of each algorithm are presented, and suggested improvements are provided. For this use case, generative algorithm for multi-variate timeseries performed best according to both qualitative and quantitative measures.

More Details

Threat data generation for space systems

Proceedings - 2021 IEEE Space Computing Conference, SCC 2021

Sahakian, Meghan A.; Musuvathy, Srideep S.; Thorpe, Jamie E.; Verzi, Stephen J.; Vugrin, Eric; Dykstra, Matthew

Concerns about cyber threats to space systems are increasing. Researchers are developing intrusion detection and protection systems to mitigate these threats, but sparsity of cyber threat data poses a significant challenge to these efforts. Development of credible threat data sets are needed to overcome this challenge. This paper describes the extension/development of three data generation algorithms (generative adversarial networks, variational auto-encoders, and generative algorithm for multi-variate timeseries) to generate cyber threat data for space systems. The algorithms are applied to a use case that leverages the NASA Operational Simulation for Small Satellites (NOS$^{3})$ platform. Qualitative and quantitative measures are applied to evaluate the generated data. Strengths and weaknesses of each algorithm are presented, and suggested improvements are provided. For this use case, generative algorithm for multi-variate timeseries performed best according to both qualitative and quantitative measures.

More Details

Integrating Machine Learning into a Methodology for Early Detection of Wellbore Failure [Slides]

Matteo, Edward N.; Roberts, Barry L.; Sobolik, Steven; Gilletly, Samuel D.; Doyle, Casey L.; John, Esther W.L.; Verzi, Stephen J.

Approximately 93% of US total energy supply is dependent on wellbores in some form. The industry will drill more wells in next ten years than in the last 100 years (King, 2014). Global well population is around 1.8 million of which approximately 35% has some signs of leakage (i.e. sustained casing pressure). Around 5% of offshore oil and gas wells “fail” early, more with age and most with maturity. 8.9% of “shale gas” wells in the Marcellus play have experienced failure (120 out of 1,346 wells drilled in 2012) (Ingraffea et al., 2014). Current methods for identifying wells that are at highest priority for increased monitoring and/or at highest risk for failure consists of “hand” analysis of multi-arm caliper (MAC) well logging data and geomechanical models. Machine learning (ML) methods are of interest to explore feasibility for increasing analysis efficiency and/or enhanced detection of precursors to failure (e.g. deformations). MAC datasets used to train ML algorithms and preliminary tests were run for “predicting” casing collar locations and performed above 90% in classification and identifying of casing collar locations.

More Details

Integrating Machine Learning into a Methodology for Early Detection of Wellbore Failure [Slides]

Matteo, Edward N.; Roberts, Barry L.; Sobolik, Steven; Gilletly, Samuel D.; Doyle, Casey L.; John, Esther W.L.; Verzi, Stephen J.

Approximately 93% of US total energy supply is dependent on wellbores in some form. The industry will drill more wells in next ten years than in the last 100 years (King, 2014). Global well population is around 1.8 million of which approximately 35% has some signs of leakage (i.e. sustained casing pressure). Around 5% of offshore oil and gas wells “fail” early, more with age and most with maturity. 8.9% of “shale gas” wells in the Marcellus play have experienced failure (120 out of 1,346 wells drilled in 2012) (Ingraffea et al., 2014). Current methods for identifying wells that are at highest priority for increased monitoring and/or at highest risk for failure consists of “hand” analysis of multi-arm caliper (MAC) well logging data and geomechanical models. Machine learning (ML) methods are of interest to explore feasibility for increasing analysis efficiency and/or enhanced detection of precursors to failure (e.g. deformations). MAC datasets used to train ML algorithms and preliminary tests were run for “predicting” casing collar locations and performed above 90% in classification and identifying of casing collar locations.

More Details

Malware Generation with Specific Behaviors to Improve Machine Learning-based Detection

Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

Foulk, James W.; Verzi, Stephen J.; Johnson, Nicholas T.; Khanna, Kanad; Zhou, Xin; Quynn, Sophie; Krishnakumar, Raga

We describe efforts in generating synthetic malware samples that have specified behaviors that can then be used to train a machine learning (ML) algorithm to detect behaviors in malware. The idea behind detecting behaviors is that a set of core behaviors exists that are often shared in many malware variants and that being able to detect behaviors will improve the detection of novel malware. However, empirically the multi-label task of detecting behaviors is significantly more difficult than malware classification, only achieving on average 84% accuracy across all behaviors as opposed to the greater than 95% multi-class or binary accuracy reported in many malware detection studies. One of the difficulties in identifying behaviors is that while there are ample malware samples, most data sources do not include behavioral labels, which means that generally there is insufficient training data for behavior identification. Inspired by the success of generative models in improving image processing techniques, we examine and extend a 1) conditional variational auto-encoder and 2) a flow-based generative model for malware generation with behavior labels. Initial experiments indicate that synthetic data is able to capture behavioral information and increase the recall of behaviors in novel malware from 32% to 45% without increasing false positives and to 52% with increased false positives.

More Details

Mind the Gap: On Bridging the Semantic Gap between Machine Learning and Malware Analysis

AISec 2020 - Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security

Smith, Michael R.; Johnson, Nicholas; Ingram, Joe B.; Carbajal, Armida J.; Haus, Bridget I.; Domschot, Eva; Ramyaa, Ramyaa; Lamb, Christopher; Verzi, Stephen J.; Kegelmeyer, William P.

Machine learning (ML) techniques are being used to detect increasing amounts of malware and variants. Despite successful applications of ML, we hypothesize that the full potential of ML is not realized in malware analysis (MA) due to a semantic gap between the ML and MA communities-as demonstrated in the data that is used. Due in part to the available data, ML has primarily focused on detection whereas MA is also interested in identifying behaviors. We review existing open-source malware datasets used in ML and find a lack of behavioral information that could facilitate stronger impact by ML in MA. As a first step in bridging this gap, we label existing data with behavioral information using open-source MA reports-1) altering the analysis from identifying malware to identifying behaviors, 2)~aligning ML better with MA, and 3)~allowing ML models to generalize to novel malware in a zero/few-shot learning manner. We classify the behavior of a malware family not seen during training using transfer learning from a state-of-the-art model for malware family classification and achieve 57%-84% accuracy on behavioral identification but fail to outperform the baseline set by a majority class predictor. This highlights opportunities for improvement on this task related to the data representation, the need for malware specific ML techniques, and a larger training set of malware samples labeled with behaviors.

More Details
Results 1–50 of 157
Results 1–50 of 157